Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l} 2x - 2{\rm{ }}\,\,{\rm{ }}\,\,khi{\rm{ }}x \le 0\\ {x^2}{\rm{ + 4}}x - 2\,\,\,\,{\rm{ }}khi{\rm{ }}x > 0 \end{array} \right.\). Tích phân \(I = \int\limits_0^\pi {\sin 2x.f\left( {{\rm{cos}}x} \right){\rm{d}}x} \) bằng
A. \(I = \frac{9}{2}\)
B. \(I =- \frac{9}{2}\)
C. \(I = - \frac{7}{6}\)
D. \(I = \frac{7}{6}\)
Lời giải của giáo viên
Do \(\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f\left( x \right)=f\left( 0 \right)=-2\) nên hàm số \(f\left( x \right)\)
Đặt \(t=\cos x\Rightarrow \text{d}t=-\sin x\text{d}x\)
Đổi cận: \(x=0\Rightarrow t=1; x=\pi \Rightarrow t=-1\).
Ta có:
\(\int\limits_{0}^{\pi }{\sin 2x.f\left( \text{cos}x \right)\text{d}x}=\int\limits_{0}^{\pi }{2\sin x.\text{cos}x.f\left( \text{cos}x \right)\text{d}x=-\int\limits_{1}^{-1}{2t.f\left( t \right)\text{d}t}}=2\int\limits_{-1}^{1}{t.f\left( t \right)\text{d}t}\)
\(=2\int\limits_{-1}^{0}{x.f\left( x \right)\text{d}x}+2\int\limits_{0}^{1}{x.f\left( x \right)\text{d}x=2\int\limits_{0}^{1}{x\left( {{x}^{2}}+4x-2 \right)\text{d}x}+2\int\limits_{-1}^{0}{x.\left( 2x-2 \right)\text{d}x}}\)
\( = 2\left( {\frac{{{x^4}}}{4} + \frac{{4{x^3}}}{3} - {x^2}} \right)\left| \begin{array}{l} 1\\ 0 \end{array} \right. + 4.\left. {\left( {\frac{{{x^3}}}{3} - \frac{{{x^2}}}{2}} \right)} \right|_{ - 1}^0 = \frac{7}{6} + \frac{{10}}{3} = \frac{9}{2}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian Oxyz cho hai điểm \(A\left( 1;0;0 \right),B\left( 3;4;-4 \right)\). Xét khối trụ \(\left( T \right)\) có trục là đường thẳng AB và có hai đường tròn đáy nằm trên mặt cầu đường kính AB. Khi \(\left( T \right)\) có thể tích lớn nhất, hai đáy của \(\left( T \right)\) nằm trên hai mặt phẳng song song lần lượt có phương trình là \(x+by+cz+{{d}_{1}}=0\) và \(x+by+cz+{{d}_{2}}=0\). Khi đó giá trị của biểu thức \(b+c+{{d}_{1}}+{{d}_{2}}\) thuộc khoảng nào sau đây?
Cho hàm số \(f\left( x \right)\), đồ thị của hàm số \(y=f'\left( x \right)\) là đường cong trong hình bên. Giá trị lớn nhất của hàm số \(g\left( x \right)=2f\left( x \right)-{{\left( x+1 \right)}^{2}}\) trên đoạn \(\left[ -3;3 \right]\) bằng
Có bao nhiêu số phức z thỏa mãn \(\left| z \right|=\sqrt{13}\) và \(\left( z-2i \right)\left( \overline{z}-4i \right)\) là số thuần ảo?
Có bao nhiêu số nguyên \(m\in \left( -20;20 \right)\) để phương trình \({{7}^{x}}+m=6{{\log }_{7}}\left( 6x-m \right)\) có nghiệm thực
Cho hàm số bậc bốn trùng phương \(y=f\left( x \right)\) có đồ thị là đường cong trong hình bên. Biết hàm số \(f\left( x \right)\) đạt cực trị tại ba điểm \({{x}_{1}},{{x}_{2}},\,{{x}_{3}}\,\,({{x}_{1}}<{{x}_{2}}<{{x}_{3}})\) thỏa mãn \({{x}_{1}}+{{x}_{3}}=4\). Gọi \({{S}_{1}}\) và \({{S}_{2}}\) là diện tích của hai hình phẳng được gạch trong hình. Tỉ số \(\frac{{{S}_{1}}}{{{S}_{2}}}\) bằng
Cho hình chóp S.ABCD có đáy là hình chữ nhật với AB=a, \(BC=a\sqrt{3}\). Cạnh bên SA vuông góc với đáy và đường thẳng SC tạo với mặt phẳng (SAB) một góc \({{30}^{{}^\circ }}\). Thể tích khối chóp S.ABCD bằng
Cho hình lăng trụ đứng ABC.A'B'C' có độ dài cạnh bên bằng 3, đáy ABC là tam giác vuông tại B và AB=2 (tham khảo hình bên). Khoảng cách từ A đến mặt phẳng \(\left( A'BC \right)\) bằng
Cho hàm số \(y=f\left( x \right)\) là một hàm đa thức có bảng xét dấu \({f}'\left( x \right)\) như sau
Số điểm cực trị của hàm số \(g\left( x \right)=f\left( {{x}^{2}}-\left| x \right| \right)\)
Tập nghiệm của bất phương trình \({{2}^{{{x}^{2}}+2x}}\le 8\) là
Đồ thị của hàm số \(y=-{{x}^{4}}-3{{x}^{2}}+1\) cắt trục tung tại điểm có tung độ bằng
Cho a là số thực dương khác 1. Khi đó \(\sqrt[4]{{{a}^{\frac{2}{3}}}}\) bằng
Đường thẳng nào dưới đây là tiệm cận ngang của đồ thị hàm số \(y=\frac{1-4x}{2x-1}\).
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật. Cạnh bên SA vuông góc với đáy, \(AB=a,\,AD=a\sqrt{3},\,SA=2a\sqrt{2}\) (tham khảo hình bên). Góc giữa đường thẳng SC và mặt phằng \(\left( SAB \right)\) bằng
Cho số phức z=-2+3i. Điểm biểu diễn của \(\overline{z}\) trên mặt phẳng tọa độ là