Câu hỏi Đáp án 2 năm trước 27

Cho hàm số \(f\left( x \right) = {x^4} - 2{x^2} + m\) (m là tham số thực). Gọi S là tập hợp các giá trị của m sao cho \(\mathop {max}\limits_{\left[ {0;2} \right]} \left| {f\left( x \right)} \right| + \mathop {min}\limits_{\left[ {0;2} \right]} \left| {f\left( x \right)} \right| = 7\). Tổng các phần tử của S là

A. 7

B. -14

C. -7

Đáp án chính xác ✅

D. 14

Lời giải của giáo viên

verified HocOn247.com

Xét hàm số \(f\left( x \right) = {x^4} - 2{x^2} + m\) liên tục trên đoạn [0;2].

Ta có \(f'\left( x \right) = 4{x^3} - 4x \Rightarrow f'\left( x \right) = 0 \Leftrightarrow 4{x^3} - 4x = 0 \Leftrightarrow \left[ \begin{array}{l} x = 1 \in \left[ {0;2} \right]\\ x = 0 \in \left[ {0;2} \right]\\ x = - 1 \notin \left[ {0;2} \right] \end{array} \right.\)

Khi đó f(0) = m; f(1) = m - 1; f(2) = m + 8.

Suy ra \(f\left( 1 \right) = m - 1 < f\left( 0 \right) = m < f\left( 2 \right) = m + 8\).

Đồ thị của hàm số y = |f(x)| thu được bằng cách giữ nguyên phần đồ thị phía trên trục hoành của (C): y = f(x), còn phần đồ thị phía dưới trục hoành của (C): y = f(x) thì lấy đối xứng qua trục hoành lên trên. Do đó, ta có biện luận sau đây:

Ta xét các trường hợp sau:

Trường hợp 1. \(m + 8 \le 0 \Leftrightarrow m \le - 8\) thì \(\left\{ \begin{array}{l} \mathop {min}\limits_{\left[ {0;2} \right]} \left| {f\left( x \right)} \right| = \left| {m + 8} \right| = - m - 8\\ \mathop {max}\limits_{\left[ {0;2} \right]} \left| {f\left( x \right)} \right| = \left| {m - 1} \right| = 1 - m \end{array} \right.\). Do đó:

\(\mathop {max}\limits_{\left[ {0;2} \right]} \left| {f\left( x \right)} \right| + \mathop {min}\limits_{\left[ {0;2} \right]} \left| {f\left( x \right)} \right| = 7 \Leftrightarrow 1 - m - m - 8 = 7 \Leftrightarrow m = - 7\) (loại).

Trường hợp 2. \(m \le 0 < m + 8 \Leftrightarrow - 8 < m \le 0\), thì đồ thị hàm số (C):y = f(x) cắt trục hoành tại xo với \({x_0} \in \left[ {0;2} \right]\). Do đó \(\mathop {min}\limits_{\left[ {0;2} \right]} \left| {f\left( x \right)} \right| = 0\). Suy ra \(\mathop {max}\limits_{\left[ {0;2} \right]} \left| {f\left( x \right)} \right| = 7\).

Mặt khác \(\mathop {max}\limits_{\left[ {0;2} \right]} \left| {f\left( x \right)} \right| = max\left\{ {\left| {m + 8} \right|;\left| {m - 1} \right|} \right\} = max\left\{ {m + 8;1 - m} \right\}\).

Suy ra \(\mathop {\max }\limits_{\left[ {0;2} \right]} \left| {f\left( x \right)} \right| = 7 \Leftrightarrow \left[ \begin{array}{l} \left\{ \begin{array}{l} 1 - m \ge m + 8\\ 1 - m = 7 \end{array} \right.\\ \left\{ \begin{array}{l} m + 8 > 1 - m\\ m + 8 = 7 \end{array} \right. \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} \left\{ \begin{array}{l} m \le - \frac{7}{2}\\ m = - 6\,\,\,\,\left( {TM} \right) \end{array} \right.\\ \left\{ \begin{array}{l} m > - \frac{7}{2}\\ m = - 1\,\,\,\,\,\left( {TM} \right) \end{array} \right. \end{array} \right.\).

Trường hợp 3. \(m - 1 \le 0 < m \Leftrightarrow 0 < m \le 1\), thì đồ thị hàm số (C): y = f(x) cắt trục hoành tại x0 với \({x_0} \in \left[ {0;2} \right]\). Do đó \(\mathop {min}\limits_{\left[ {0;2} \right]} \left| {f\left( x \right)} \right| = 0\).

Măt khác \(\mathop {max}\limits_{\left[ {0;2} \right]} \left| {f\left( x \right)} \right| = m + 8\).

Suy ra \(\mathop {max}\limits_{\left[ {0;2} \right]} \left| {f\left( x \right)} \right| + \mathop {min}\limits_{\left[ {0;2} \right]} \left| {f\left( x \right)} \right| = 7 \Leftrightarrow m + 8 = 7 \Leftrightarrow m = - 1\) (loại).

Trường hợp 4. \(m - 1 > 0 \Leftrightarrow m > 1\) thì \(\left\{ \begin{array}{l} \mathop {min}\limits_{\left[ {0;2} \right]} \left| {f\left( x \right)} \right| = m - 1\\ \mathop {max}\limits_{\left[ {0;2} \right]} \left| {f\left( x \right)} \right| = m + 8 \end{array} \right.\). Do đó:

\(\mathop {max}\limits_{\left[ {0;2} \right]} \left| {f\left( x \right)} \right| + \mathop {min}\limits_{\left[ {0;2} \right]} \left| {f\left( x \right)} \right| = 7 \Leftrightarrow m - 1 + m + 8 = 7 \Leftrightarrow m = 0\) (loại).

Suy ra \(S = \left\{ { - 1; - 6} \right\}\).

Vậy tổng các phần tử của S là \(\left( { - 6} \right) + \left( { - 1} \right) = - 7\).

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Tìm số phức z biết \(\overline z  = 1 - 2i\) là

Xem lời giải » 2 năm trước 45
Câu 2: Trắc nghiệm

Cho hình hộp chữ nhật ABCD.A'B'C'D' có M, N, P lần lượt là trung điểm các cạnh BC, C'D', DD' (tham khảo hình vẽ). Biết thể tích khối hộp bằng 144, thể tích khối tứ diện AMNP bằng

Xem lời giải » 2 năm trước 44
Câu 3: Trắc nghiệm

Xét các số thực dương a,b,c,x,y,z thỏa mãn a > 1,b > 1,c > 1 và \({a^x} = {b^y} = {c^z} = \sqrt[3]{{abc}}\). Giá trị nhỏ nhất của biểu thức P = x + y + z thuộc tập hợp nào dưới đây ?

Xem lời giải » 2 năm trước 44
Câu 4: Trắc nghiệm

Số lượng một loại vi rút cúm mùa chủng A (vi rút A) trong phòng thí nghiệm được tính theo công thức \(s\left( t \right) = s\left( 0 \right){.2^t},\) trong đó s(0) là số lượng vi rút A lúc ban đầu, s(t) là số lượng vi rút A sau t giờ. Biết sau 3 giờ thì số lượng vi rút A là 625 nghìn con và nếu số lượng vi rút lớn hơn \(2,{1.10^{19}}\) thì người nhiễm vi rút A sẽ có biểu hiện sốt và đau họng. Hỏi sau ít nhất bao nhiêu ngày kể từ  khi bắt đầu nhiễm thì bệnh nhân sẽ có biểu hiện sốt và đau họng?

Xem lời giải » 2 năm trước 44
Câu 5: Trắc nghiệm

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x - 2y + z - 5 = 0. Điểm nào dưới đây thuộc (P)?

Xem lời giải » 2 năm trước 44
Câu 6: Trắc nghiệm

Kí hiệu z0 là nghiệm phức có phần ảo dương của phương trình \({z^2} + 2z + 10 = 0\). Trên mặt phẳng tọa độ, điểm nào dưới đây là điểm biểu diễn số phức \(w = {i^{2019}}{z_0}\)?

Xem lời giải » 2 năm trước 43
Câu 7: Trắc nghiệm

Số giao điểm của đường cong \(y = {x^3} - 2{x^2} + x - 1\) và đường thẳng y = 1 - 2x là

Xem lời giải » 2 năm trước 43
Câu 8: Trắc nghiệm

Trong không gian Oxyz, phương trình nào dưới đây là phương trình đường thẳng đi qua điểm A(1;2;0) và vuông góc với mặt phẳng \(\left( P \right):2x + 2y - 4z - 5 = 0?\)

Xem lời giải » 2 năm trước 42
Câu 9: Trắc nghiệm

Cho khối cầu có thể tích \(V = 288\pi \). Bán kính của khối cầu bằng

Xem lời giải » 2 năm trước 41
Câu 10: Trắc nghiệm

Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?

Xem lời giải » 2 năm trước 41
Câu 11: Trắc nghiệm

Cho cấp số nhân (un) với u1 = 2 và u4 = 16. Công bội của cấp số nhân đã cho bằng

Xem lời giải » 2 năm trước 40
Câu 12: Trắc nghiệm

Tìm tập nghiệm S của bất phương trình \(\log _2^2x - 5{\log _2}x + 4 \ge 0\)

Xem lời giải » 2 năm trước 40
Câu 13: Trắc nghiệm

Cho hai số phức \({z_1} = 2 + 2i\) và \({z_2} =  - 3 - i\). Phần ảo của số phức \({z_1} - \overline {{z_2}} \) là

Xem lời giải » 2 năm trước 40
Câu 14: Trắc nghiệm

Tập nghiệm của bất phương trình \({3^{x + 2}} \ge \frac{1}{9}\)

Xem lời giải » 2 năm trước 40
Câu 15: Trắc nghiệm

Có bao nhiêu giá trị nguyên của tham số m để  hàm số \(y = \frac{m}{3}{x^3} - 2m{x^2} + \left( {3m + 6} \right)x + 2020\) đồng biến trên R?

Xem lời giải » 2 năm trước 39

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »