Cho hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaWG5bGaeyypa0ZaaSaaaeaacaWG4bGaey4kaSIaaGymaaqaaiaa % dIhacqGHsislcaaIYaaaaiaaywW7caGGOaGaam4qaiaacMcaaaa!4116! y = \frac{{x + 1}}{{x - 2}}\quad (C)\) . Gọi d là khoảng cách từ giao điểm của hai đường tiệm cận của đồ thị đến một tiếp tuyến của (C). Giá trị lớn nhất mà d có thể đạt được là:
A.
\(% MathType!MTEF!2!1!+-
% feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8
% qadaGcaaqaaiaaiodaaSqabaaaaa!36EB!
\sqrt 3 \)
B.
\(% MathType!MTEF!2!1!+-
% feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8
% qadaGcaaqaaiaaiAdaaSqabaaaaa!36EE!
\sqrt 6 \)
C.
\(% MathType!MTEF!2!1!+-
% feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8
% qadaWcaaqaamaakaaabaGaaGOmaaWcbeaaaOqaaiaaikdaaaaaaa!37C0!
\frac{{\sqrt 2 }}{2}\)
D.
\(% MathType!MTEF!2!1!+-
% feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8
% qadaGcaaqaaiaaiwdaaSqabaaaaa!36ED!
\sqrt 5 \)
Lời giải của giáo viên
Ta có: \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiaacE % cadaqadaqaaiaadIhaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiab % gkHiTiaaiodaaeaadaqadaqaaiaadIhacqGHsislcaaIYaaacaGLOa % GaayzkaaWaaWbaaSqabeaacaaIYaaaaaaakiaaywW7cqGHaiIicaWG % 4bGaeyiyIKRaaGOmaaaa!47E2! y'\left( x \right) = \frac{{ - 3}}{{{{\left( {x - 2} \right)}^2}}}\quad \forall x \ne 2\). Gọi I là giao của hai tiệm cận nên I(2;1)
Gọi \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaabm % aabaGaamiEamaaBaaaleaacaaIWaaabeaakiaacUdacaWG5bWaaSba % aSqaaiaaicdaaeqaaaGccaGLOaGaayzkaaGaeyypa0Jaamytamaabm % aabaGaamiEamaaBaaaleaacaaIWaaabeaakiaacUdadaWcaaqaaiaa % dIhadaWgaaWcbaGaaGimaaqabaGccqGHRaWkcaaIXaaabaGaamiEam % aaBaaaleaacaaIWaaabeaakiabgkHiTiaaikdaaaaacaGLOaGaayzk % aaGaeyicI48aaeWaaeaacaWGdbaacaGLOaGaayzkaaaaaa!4DFA! M\left( {{x_0};{y_0}} \right) = M\left( {{x_0};\frac{{{x_0} + 1}}{{{x_0} - 2}}} \right) \in \left( C \right)\)
Khi đó tiếp tuyến tại \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaabm % aabaGaamiEamaaBaaaleaacaaIWaaabeaakiaacUdacaWG5bWaaSba % aSqaaiaaicdaaeqaaaGccaGLOaGaayzkaaaaaa!3CE8! M\left( {{x_0};{y_0}} \right)\) có phương trình:
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiLdqKaai % OoaiaaysW7caWG5bGaeyypa0JaamyEaiaacEcadaqadaqaaiaadIha % daWgaaWcbaGaaGimaaqabaaakiaawIcacaGLPaaadaqadaqaaiaadI % hacqGHsislcaWG4bWaaSbaaSqaaiaaicdaaeqaaaGccaGLOaGaayzk % aaGaey4kaSIaamyEamaaBaaaleaacaaIWaaabeaaaaa!48EE! \Delta :\;y = y'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + {y_0}\)
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyi1HSTaam % yEaiabg2da9maalaaabaGaeyOeI0IaaG4maaqaamaabmaabaGaamiE % amaaBaaaleaacaaIWaaabeaakiabgkHiTiaaikdaaiaawIcacaGLPa % aadaahaaWcbeqaaiaaikdaaaaaaOWaaeWaaeaacaWG4bGaeyOeI0Ia % amiEamaaBaaaleaacaaIWaaabeaaaOGaayjkaiaawMcaaiabgUcaRm % aalaaabaGaamiEamaaBaaaleaacaaIWaaabeaakiabgUcaRiaaigda % aeaacaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaeyOeI0IaaGOmaaaaaa % a!4F91! \Leftrightarrow y = \frac{{ - 3}}{{{{\left( {{x_0} - 2} \right)}^2}}}\left( {x - {x_0}} \right) + \frac{{{x_0} + 1}}{{{x_0} - 2}}\)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyi1HS9aaS % aaaeaacqGHsislcaaIZaaabaWaaeWaaeaacaWG4bWaaSbaaSqaaiaa % icdaaeqaaOGaeyOeI0IaaGOmaaGaayjkaiaawMcaamaaCaaaleqaba % GaaGOmaaaaaaGccaGGUaGaamiEaiabgkHiTiaadMhacqGHRaWkdaWc % aaqaaiaaiodacaWG4bWaaSbaaSqaaiaaicdaaeqaaaGcbaWaaeWaae % aacaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaeyOeI0IaaGOmaaGaayjk % aiaawMcaamaaCaaaleqabaGaaGOmaaaaaaGccqGHRaWkdaWcaaqaai % aadIhadaWgaaWcbaGaaGimaaqabaGccqGHRaWkcaaIXaaabaGaamiE % amaaBaaaleaacaaIWaaabeaakiabgkHiTiaaikdaaaGaeyypa0JaaG % imaaaa!5735! \Leftrightarrow \frac{{ - 3}}{{{{\left( {{x_0} - 2} \right)}^2}}}.x - y + \frac{{3{x_0}}}{{{{\left( {{x_0} - 2} \right)}^2}}} + \frac{{{x_0} + 1}}{{{x_0} - 2}} = 0\)
Khi đó ta có:\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaabm % aabaGaamysaiaacUdacqGHuoaraiaawIcacaGLPaaacqGH9aqpdaWc % aaqaamaaemaabaWaaSaaaeaacqGHsislcaaI2aaabaWaaeWaaeaaca % WG4bWaaSbaaSqaaiaaicdaaeqaaOGaeyOeI0IaaGOmaaGaayjkaiaa % wMcaamaaCaaaleqabaGaaGOmaaaaaaGccqGHsislcaaIXaGaey4kaS % YaaSaaaeaacaaIZaGaamiEamaaBaaaleaacaaIWaaabeaaaOqaamaa % bmaabaGaamiEamaaBaaaleaacaaIWaaabeaakiabgkHiTiaaikdaai % aawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaaaOGaey4kaSYaaSaa % aeaacaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaaGymaaqaai % aadIhadaWgaaWcbaGaaGimaaqabaGccqGHsislcaaIYaaaaaGaay5b % SlaawIa7aaqaamaakaaabaGaaGymaiabgUcaRmaalaaabaGaaGyoaa % qaamaabmaabaGaamiEamaaBaaaleaacaaIWaaabeaakiabgkHiTiaa % ikdaaiaawIcacaGLPaaadaahaaWcbeqaaiaaisdaaaaaaaqabaaaaa % aa!6352! d\left( {I;\Delta } \right) = \frac{{\left| {\frac{{ - 6}}{{{{\left( {{x_0} - 2} \right)}^2}}} - 1 + \frac{{3{x_0}}}{{{{\left( {{x_0} - 2} \right)}^2}}} + \frac{{{x_0} + 1}}{{{x_0} - 2}}} \right|}}{{\sqrt {1 + \frac{9}{{{{\left( {{x_0} - 2} \right)}^4}}}} }}\)
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyi1HSTaam % izamaabmaabaGaamysaiaacUdacqGHuoaraiaawIcacaGLPaaacqGH % 9aqpdaWcaaqaamaaemaabaGaaGOnaiaadIhadaWgaaWcbaGaaGimaa % qabaGccqGHsislcaaIXaGaaGOmaaGaay5bSlaawIa7aaqaamaakaaa % baWaaeWaaeaacaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaeyOeI0IaaG % OmaaGaayjkaiaawMcaamaaCaaaleqabaGaaGinaaaakiabgUcaRiaa % iMdaaSqabaaaaaaa!4ED2! \Leftrightarrow d\left( {I;\Delta } \right) = \frac{{\left| {6{x_0} - 12} \right|}}{{\sqrt {{{\left( {{x_0} - 2} \right)}^4} + 9} }}\)
Áp dụng BĐT: \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCa % aaleqabaGaaGOmaaaakiabgUcaRiaadkgadaahaaWcbeqaaiaaikda % aaGccqGHLjYScaaIYaGaamyyaiaadkgacaaMf8UaeyiaIiIaamyyai % aacYcacaWGIbaaaa!43B2! {a^2} + {b^2} \ge 2ab\quad \forall a,b\)
Tacó: \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGyoaiabgU % caRmaabmaabaGaamiEamaaBaaaleaacaaIWaaabeaakiabgkHiTiaa % ikdaaiaawIcacaGLPaaadaahaaWcbeqaaiaaisdaaaGccqGHLjYSca % aIYaGaaiOlaiaaiodacaGGUaWaaeWaaeaacaWG4bWaaSbaaSqaaiaa % icdaaeqaaOGaeyOeI0IaaGOmaaGaayjkaiaawMcaamaaCaaaleqaba % GaaGOmaaaakiabgsDiBpaakaaabaGaaGyoaiabgUcaRmaabmaabaGa % amiEamaaBaaaleaacaaIWaaabeaakiabgkHiTiaaikdaaiaawIcaca % GLPaaadaahaaWcbeqaaiaaisdaaaaabeaakiabgwMiZoaakaaabaGa % aGOnamaabmaabaGaamiEamaaBaaaleaacaaIWaaabeaakiabgkHiTi % aaikdaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaabeaaaaa!5B24! 9 + {\left( {{x_0} - 2} \right)^4} \ge 2.3.{\left( {{x_0} - 2} \right)^2} \Leftrightarrow \sqrt {9 + {{\left( {{x_0} - 2} \right)}^4}} \ge \sqrt {6{{\left( {{x_0} - 2} \right)}^2}} \)
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4Taam % izamaabmaabaGaamysaiaacUdacqGHuoaraiaawIcacaGLPaaacqGH % 9aqpdaWcaaqaamaaemaabaGaaGOnaiaadIhadaWgaaWcbaGaaGimaa % qabaGccqGHsislcaaIXaGaaGOmaaGaay5bSlaawIa7aaqaamaakaaa % baWaaeWaaeaacaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaeyOeI0IaaG % OmaaGaayjkaiaawMcaamaaCaaaleqabaGaaGinaaaakiabgUcaRiaa % iMdaaSqabaaaaOGaeyizIm6aaSaaaeaadaabdaqaaiaaiAdacaWG4b % WaaSbaaSqaaiaaicdaaeqaaOGaeyOeI0IaaGymaiaaikdaaiaawEa7 % caGLiWoaaeaadaGcaaqaaiaaiAdadaqadaqaaiaadIhadaWgaaWcba % GaaGimaaqabaGccqGHsislcaaIYaaacaGLOaGaayzkaaWaaWbaaSqa % beaacaaIYaaaaaqabaaaaOGaeyypa0ZaaOaaaeaacaaI2aaaleqaaa % aa!6198! \Rightarrow d\left( {I;\Delta } \right) = \frac{{\left| {6{x_0} - 12} \right|}}{{\sqrt {{{\left( {{x_0} - 2} \right)}^4} + 9} }} \le \frac{{\left| {6{x_0} - 12} \right|}}{{\sqrt {6{{\left( {{x_0} - 2} \right)}^2}} }} = \sqrt 6 \)
Vậy giá trị lớn nhất mà có thể đạt được là: \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaaca % aI2aaaleqaaaaa!36CE! \sqrt 6\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2 % da9iaadggacaWG4bWaaWbaaSqabeaacaaIZaaaaOGaey4kaSIaamOy % aiaadIhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWGJbGaamiEai % abgUcaRiaaigdaaaa!42EC! y = a{x^3} + b{x^2} + cx + 1\) có bảng biến thiên như sau:
Mệnh đề nào dưới đây đúng?
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh a, SO vuông góc với mặt phẳng (ABCD) và SO = a. Khoảng cách giữa SC và AB bằng
Cho đồ thị hàm số y = f(x) có đồ thị như hình vẽ. Hàm số y = f(x) đồng biến trên khoảng nào dưới đây?
Công thức nào sau đây là đúng với cấp số cộng có số hạng đầu \(u_1\), công sai d, \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgw % MiZkaaikdacaGGUaaaaa!3A1A! n \ge 2.\) ?
Cho hàm số y = f(x) có bảng biến thiên như sau:
Mệnh đề nào dưới đây đúng?
Cho hình tứ diện OABC có đáy OBC là tam giác vuông tại O,OB =a ,OC= \(a\sqrt3\) . Cạnh OA vuông góc với mặt phẳng (OBC), \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4taiaadg % eacqGH9aqpcaWGHbWaaOaaaeaacaaIZaaaleqaaaaa!3A52! OA = a\sqrt 3 \) gọi M là trung điểm của BC . Tính theo a khoảng cách h giữa hai đường thẳng AB và OM.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Tính thể tích khối cầu ngoại tiếp khối chóp SABCD.
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A( -3;1; -4) và B(1; -1;2). Phương trình mặt cầu (S) nhận AB làm đường kính là
Nghiệm của phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqaM5cvLHfij5gC1rhimfMBNvxyNvga7TNm951EYG % xlX0xFTWLzYf2y7ftF7HtF9adatCvAUfeBSjuyZL2yd9gzLbvyNv2C % aerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLD % harqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY-Hhbbf9v8qqaqFr % 0xc9pk0xbba9q8WqFfeaY-biLkVcLq-JHqpepeea0-as0Fb9pgeaYR % Xxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaaba % aaaaaaaapeGaaGOma8aadaahaaWcbeqaa8qacaaIYaGaamiEaiabgk % HiTiaaigdaaaGccqGHsisldaWcaaWdaeaapeGaaGymaaWdaeaapeGa % aGioaaaacqGH9aqpcaaIWaaaaa!4F78! {2^{2x - 1}} - \frac{1}{8} = 0\) là
Cho A(1;-3;2) và mặt phẳng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qadaqadaqaaiaadcfaaiaawIcacaGLPaaacaGG6aGaaGOmaiaadIha % cqGHsislcaWG5bGaey4kaSIaaG4maiaadQhacqGHsislcaaIXaGaey % ypa0JaaGimaaaa!42DA! \left( P \right):2x - y + 3z - 1 = 0\) . Viết phương trình tham số đường thẳng d đi qua A, vuông góc với (P)
Trong không gian với hệ tọa độ Oxyz cho đường thẳng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l % bbf9q8WrFfeuY-Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0-yr0R % Yxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa % caGaaeqabaqaaeaadaaakeaacaWGKbGaaiOoamaalaaabaGaamiEai % abgUcaRiaaiodaaeaacaaIYaaaaiabg2da9maalaaabaGaamyEaiab % gkHiTiaaigdaaeaacaaIXaaaaiabg2da9maalaaabaGaamOEaiabgk % HiTiaaigdaaeaacqGHsislcaaIZaaaaaaa!40A4! d:\frac{{x + 3}}{2} = \frac{{y - 1}}{1} = \frac{{z - 1}}{{ - 3}}\). Hình chiếu vuông góc của d trên mặt phẳng (Oyz) là một đường thẳng có vectơ chỉ phương là
Cho hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2 % da9maalaaabaGaamiEaiabgUcaRiaaikdaaeaacaWG4bGaey4kaSIa % aGymaaaaaaa!3D3D! y = \frac{{x + 2}}{{x + 1}}\) có đồ thị là (C). Gọi d là khoảng cách từ giao điểm 2 tiệm cận của (C) đến một tiếp tuyến bất kỳ của (C). Giá trị lớn nhất có thể đạt được là:
Trong không gian Oxyz, cho hình thoi ABCD với A(-1;2;1) ; B (2;3;2). Tâm I của hình thoi thuộc đường thẳng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaacQ % dadaWcaaqaaiaadIhacqGHRaWkcaaIXaaabaGaeyOeI0IaaGymaaaa % cqGH9aqpdaWcaaqaaiaadMhaaeaacqGHsislcaaIXaaaaiabg2da9m % aalaaabaGaamOEaiabgkHiTiaaikdaaeaacaaIXaaaaaaa!4421! d:\frac{{x + 1}}{{ - 1}} = \frac{y}{{ - 1}} = \frac{{z - 2}}{1}\). Tọa độ đỉnh D là
Trong không gian với hệ tọa độ Oxyx , cho đường thẳng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaacQ % dadaWcaaqaaiaadIhacqGHsislcaaIXaaabaGaaGymaaaacqGH9aqp % daWcaaqaaiaadMhacqGHsislcaaIYaaabaGaaGymaaaacqGH9aqpda % WcaaqaaiaadQhacqGHsislcaaIXaaabaGaaGOmaaaaaaa!43FB! d:\frac{{x - 1}}{1} = \frac{{y - 2}}{1} = \frac{{z - 1}}{2}\),A(2;1;4) . Gọi H(a;b;c) là điểm thuộc d sao cho AH có độ dài nhỏ nhất. Tính \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiabg2 % da9iaadggadaahaaWcbeqaaiaaiodaaaGccqGHRaWkcaWGIbWaaWba % aSqabeaacaaIZaaaaOGaey4kaSIaam4yamaaCaaaleqabaGaaG4maa % aaaaa!3F1D! T = {a^3} + {b^3} + {c^3}\).
Tính tích phân \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaada % qadaqaaiaaikdacaWGHbGaamiEaiabgUcaRiaadkgaaiaawIcacaGL % PaaacaqGKbGaamiEaaWcbaGaaGymaaqaaiaaikdaa0Gaey4kIipaaa % a!41A8! \int\limits_1^2 {\left( {2ax + b} \right){\rm{d}}x} \)