Cho hàm số \(f(x) = {\left( {1 - {x^2}} \right)^{2019}}.\) Khẳng định nào sau đây là đúng?
A. Hàm số đồng biến trên R
B. Hàm số đồng biến trên \(\left( { - \infty ;0} \right)\)
C. Hàm số nghịch biến trên \(\left( { - \infty ;0} \right)\)
D. Hàm số nghịch biến trên R
Lời giải của giáo viên
CÂU HỎI CÙNG CHỦ ĐỀ
Hàm số nào trong các hàm số sau đây không là nguyên hàm của hàm số \(y = {x^{2019}}?\)
Cho hàm số \(y=f(x)\) có bảng biến thiên như hình dưới đây.
Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số \(y = \frac{1}{{2f(x) - 1}}\) là
\(\int {\sin x} dx = f\left( x \right) + C\) khi và chỉ khi
Hàm số \(y = F(x)\) là một nguyên hàm của hàm số \(y = \frac{1}{x}\) trên \(\left( { - \infty ;0} \right)\) thỏa mãn \(F( - 2) = 0.\) Khẳng định nào sau đây là đúng?
Hàm số nào trong các hàm số sau đây là một nguyên hàm của hàm số \(y = {e^{ - 2x}}?\)
Một lớp học gồm có 20 học sinh nam và 15 học sinh nữ. Cần chọn ra 2 học sinh, 1 nam và 1 nữ để phân công trực nhật. Số cách chọn là
Hàm số nào trong các hàm số sau đây có một nguyên hàm bằng \({\cos ^2}x?\)
Hàm số \(y = - \frac{{{x^3}}}{3} + {x^2} - mx + 1\) nghịch biến trên khoảng \((0; + \infty )\) khi và chỉ khi
Trong không gian tọa độ Oxyz cho điểm \(M(a;b;c).\) Tọa độ của véc tơ \(\overrightarrow {MO} \) là
Gọi A là tập hợp tất cả các số có dạng \(\overline {abc} \) với \(a,b,c \in \left\{ {1;2;3;4} \right\}.\) Số phần tử của tập hợp A là
Cho hình chóp S.ABCD có ABCD là hình vuông cạnh \(a\). Tam giác SAB đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Khoảng cách giữa hai đường thẳng BC và SD là
Trong không gian tọa độ Oxyz, cho hình hộp \(ABCD.A'B'C'D'\) có \(A\left( {0;0;0} \right),B\left( {a;0;0} \right),D\left( {0;2a;0} \right),A'\left( {0;0;2a} \right)\) với \(a \ne 0.\) Độ dài đoạn thẳng AC' là
Cho tam giác ABC vuông tại A. \(AB=c, AC=b\). Quay tam giác ABC xung quanh đường thẳng chứa cạnh AB ta được một hình nón có thể tích bằng
Nếu một hình nón có diện tích xung quanh gấp đôi diện tích của hình tròn đáy thì góc ở đỉnh của hình nón bằng
Trong không gian tọa độ Oxyz, góc giữa hai véc tơ \(\overrightarrow i \) và \(\overrightarrow u = ( - \sqrt 3 ;0;1)\) là