Câu hỏi Đáp án 2 năm trước 38

Cho hàm số \(f(x) = \frac{{\left( {m + 1} \right)\sqrt { - 2x + 3} - 1}}{{ - \sqrt { - 2x + 3} + \frac{2}{m}}}\) (m khác 0 và là tham số thực). Tập hợp m để hàm số đã cho nghịch biến trên khoảng \(\left( { - \frac{1}{2};\,\,1} \right)\) có dạng \(S = \left( { - \infty ;\,\,a} \right) \cup \left( {b;\,\,c} \right] \cup \left[ {d;\,\, + \infty } \right)\), với a, b, c, d là các số thực. Tính P = a - b + c - d.      

A. -3

Đáp án chính xác ✅

B. -1

C. 0

D. 2

Lời giải của giáo viên

verified HocOn247.com

Điều kiện xác định: \(\left\{ \begin{array}{l} x \le \frac{3}{2}\\ - \sqrt { - 2x + 3} + \frac{2}{m} \ne 0 \end{array} \right.\).

Đặt \(u = \sqrt { - 2x + 3} \Rightarrow u' = \frac{{ - 1}}{{\sqrt { - 2x + 3} }} < 0,\,\forall x \in \left( { - \frac{1}{2};\,\,1} \right)\), suy ra hàm số \(u = \sqrt { - 2x + 3} \) nghịch biến trên khoảng \(\left( { - \frac{1}{2};\,\,1} \right)\). Với \(x \in \left( { - \frac{1}{2};\,\,1} \right) \Rightarrow u \in \left( {1;\,\,2} \right)\).

Yêu cầu bài toán trở thành tìm m để hàm số \(g\left( u \right) = \frac{{\left( {m + 1} \right)u - 1}}{{ - u + \frac{2}{m}}}\) đồng biến trên khoảng (1;2)

Ta có \(g'\left( u \right) = \frac{{\frac{2}{m}\left( {m + 1} \right) - 1}}{{{{\left( { - u + \frac{2}{m}} \right)}^2}}},\,\,u \ne \frac{2}{m}\).

Hàm số g(u) đồng biến trên khoảng (1;2) khi và chỉ khi \(\left\{ \begin{array}{l} g'\left( u \right) > 0,\,\,\forall u \in \left( {1;\,\,2} \right)\\ \frac{2}{m} \notin \left( {1;\,\,2} \right) \end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l} \frac{2}{m}\left( {m + 1} \right) - 1 > 0\\ \left[ \begin{array}{l} \frac{2}{m} \le 1\\ \frac{2}{m} \ge 2 \end{array} \right. \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} \frac{{m + 2}}{m} > 0\\ \left[ \begin{array}{l} \frac{{m - 2}}{m} \ge 0\\ \frac{{m - 1}}{m} \le 0 \end{array} \right. \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} \left[ \begin{array}{l} m > 0\\ m < - 2 \end{array} \right.\\ \left[ \begin{array}{l} m \ge 2\\ m < 0\\ 0 < m \le 1 \end{array} \right. \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} \left[ \begin{array}{l} m > 0\\ m < - 2 \end{array} \right.\\ \left[ \begin{array}{l} m \ge 2\\ m \le 1 \end{array} \right. \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} m < - 2\\ 0 < m \le 1\\ m \ge 2 \end{array} \right.\)

Vậy \(S = \left( { - \infty ;\,\, - 2} \right) \cup \left( {0;\,\,1} \right] \cup \left[ {2;\,\, + \infty } \right) \Rightarrow a = - 2;\,\,b = 0;\,\,c = 1;\,\,\,d = 2\).

Do đó P =  - 2 - 0 + 1 - 2 =  - 3.

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho hình chóp S.ABC, đáy là tam giác ABC có \(AB = a;\,AC = a\sqrt 2 \) và \(\widehat {CAB} = 135^\circ \), tam giác SAB vuông tại B và tam giác SAC vuông tại A. Biết góc giữa hai mặt phẳng (SAC) và (SAB) bằng 30o. Tính thể tích khối chóp S.ABC

Xem lời giải » 2 năm trước 49
Câu 2: Trắc nghiệm

Trong không gian Oxyz, cho các vectơ \(\overrightarrow a = \left( { - 2;1;2} \right)\), \(\overrightarrow b = \left( {1; - 1;0} \right)\). Tích vô hướng \(\left( {\overrightarrow a - \overrightarrow b } \right).\overrightarrow b \) bằng

Xem lời giải » 2 năm trước 46
Câu 3: Trắc nghiệm

Họ nguyên hàm của hàm số \(y = {e^x}\left( {1 - \frac{{{e^{ - x}}}}{{{{\cos }^2}x}}} \right)\) là

Xem lời giải » 2 năm trước 45
Câu 4: Trắc nghiệm

Trong không gian Oxyz, điểm nào dưới đây thuộc đường thẳng \(d:\left\{ \begin{array}{l} x = 1 + 2t\\ y = 3 - t\\ z = 3t \end{array} \right.\)?

Xem lời giải » 2 năm trước 45
Câu 5: Trắc nghiệm

Họ tất cả các nguyên hàm của hàm số \(f\left( x \right) = \sin x - 6{x^2}\) là

Xem lời giải » 2 năm trước 44
Câu 6: Trắc nghiệm

Trong không gian Oxyz, mặt phẳng đi qua điểm M(1;2;3) và song song với mặt phẳng \(\left( P \right):x - 2y + z - 3 = 0\) có phương trình là

Xem lời giải » 2 năm trước 43
Câu 7: Trắc nghiệm

Cho hàm số y = f(x) và f(x) > 0, với mọi x thuộc R. Biết hàm số y = f'(x) có bảng biến thiên như hình vẽ và \(f\left( {\frac{1}{2}} \right) = \frac{{137}}{{16}}\). Có bao nhiêu giá trị nguyên của \(m \in \left[ { - 2020\,;\,\,2020} \right]\) để hàm số \(g\left( x \right) = {e^{ - {x^2} + 4mx - 5}}.f\left( x \right)\) đồng biến trên \(\left( { - 1;\frac{1}{2}} \right)\).

Xem lời giải » 2 năm trước 42
Câu 8: Trắc nghiệm

Tìm tập xác định của hàm số \(y = {e^{\log \left( { - {x^2} + 3x} \right)}}\)

Xem lời giải » 2 năm trước 42
Câu 9: Trắc nghiệm

Diện tích xung quanh của hình trụ có độ dài đường sinh l và bán kính đáy r bằng

Xem lời giải » 2 năm trước 40
Câu 10: Trắc nghiệm

Cho hàm số y = f(x) có bảng biến thiên như sau:

Khẳng định nào sau đây đúng

Xem lời giải » 2 năm trước 40
Câu 11: Trắc nghiệm

Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, AB = 3a,AD = DC = a. Gọi I là trung điểm của AD, biết hai mặt phẳng (SBI) và (SCI) cùng vuông góc với đáy và mặt phẳng (SBC) tạo với đáy một góc 60o. Gọi M điểm trên AB sao cho AM = 2a, tính khoảng cách giữa MD và SC.

Xem lời giải » 2 năm trước 39
Câu 12: Trắc nghiệm

Trong không gian Oxyz, cho mặt phẳng \((\alpha)\): 2x + 3z - 1 = 0. Vectơ nào dưới đây là một vectơ pháp tuyến của \((\alpha)\)

Xem lời giải » 2 năm trước 38
Câu 13: Trắc nghiệm

Cho hàm số y = f(x) liên tục trên R và có đồ thị như hình vẽ. Tổng tất cả giá trị nguyên của tham số m để phương trình \(f\left( {\sqrt {2f\left( {\cos x} \right)} } \right) = m\) có nghiệm \(x \in \left[ {\frac{\pi }{2};\pi } \right).\)

Xem lời giải » 2 năm trước 38
Câu 14: Trắc nghiệm

Gọi k và l lần lượt là số đường tiệm cận ngang và số đường tiệm cận đứng của đồ thị hàm số \(y = \frac{{\sqrt {2 - x} }}{{\left( {x - 1} \right)\sqrt x }}\). Khẳng định nào sau đây đúng?

Xem lời giải » 2 năm trước 38
Câu 15: Trắc nghiệm

Cho các số thực a, b, c thuộc khoảng \(\left( {1; + \infty } \right)\) và thỏa mãn \(\log _{\sqrt a }^2b + {\log _b}c.{\log _b}\left( {\frac{{{c^2}}}{b}} \right) + 9{\log _a}c = 4{\log _a}b\). Giá trị của biểu thức \({\log _a}b + {\log _b}{c^2}\) bằng

Xem lời giải » 2 năm trước 38

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »