Lời giải của giáo viên
Căn cứ vào bảng biến thiên ta có
\({f}'\left( x \right)<0, \forall x\in \left( 0\,;3 \right)\) và \({f}'\left( x \right)>0, \forall x\in \left( 3\,;+\infty \right)\) suy ra hàm số đạt cực tiểu tại x=3.
\({f}'\left( x \right)>0, \forall x\in \left( -\infty \,;0 \right)\) và \({f}'\left( x \right)<0, \forall x\in \left( 0\,;3 \right)\) suy ra hàm số đạt cực đại tại x=0.
CÂU HỎI CÙNG CHỦ ĐỀ
Có bao nhiêu số tự nhiên có ba chữ số đôi một khác nhau?
Thể tích của khối hộp chữ nhật có ba kích thước 5; 7; 8 bằng
Cho một khối trụ có độ dài đường sinh là \(l=6~\text{cm}\) và bán kính đường tròn đáy là \(r=5~\text{cm}\). Diện tích toàn phần của khối trụ là
Trong một lớp học gồm 15 học sinh nam và 10 học sinh nữ. Giáo viên gọi ngẫu nhiên 4 học sinh lên giải bài tập. Tính xác suất để 4 học sinh được gọi đó có cả nam và nữ?
Có bao nhiêu số tự nhiên y sao cho ứng với mỗi y có không quá 148 số nguyên $x$ thỏa mãn \(\frac{{{3}^{x+2}}-\frac{1}{3}}{y-\ln x}\ge 0\)?
Cho hàm số \(f\left( x \right)\), đồ thị hàm số \(y={f}'\left( x \right)\) là đường cong trong hình bên. Giá trị nhỏ nhất của hàm số \(g\left( x \right)=f\left( \frac{x}{2} \right)\) trên đoạn \(\left[ -5;3 \right]\) bằng
Tích phân \(\int_{1}^{2}{x\left( x+2 \right)}~\text{d}x\) bằng
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \(\left( S \right)\) có phương trình: \({{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2x-4y+4z-7=0\). Xác định tọa độ tâm I và bán kính R của mặt cầu \(\left( S \right)\).
Với x>0, đạo hàm của hàm số \(y={{\log }_{2}}x\) là
Nghiệm của phương trình \({\log _2}\left( {x - 3} \right) = 3\) là:
Cho hàm số bậc ba \(f\left( x \right)=a{{x}^{3}}+b{{x}^{2}}+cx+d\) và đường thẳng \(d:g\left( x \right)=mx+n\) có đồ thị như hình vẽ. Gọi \({{S}_{1}},{{S}_{2}},{{S}_{3}}\) lần lượt là diện tích của các phần giới hạn như hình bên. Nếu \({{S}_{1}}=4\) thì tỷ số \(\frac{{{S}_{2}}}{{{S}_{3}}}\) bằng.
Với a$ là số thực dương tùy ý, \({{\log }_{5}}\left( \frac{125}{a} \right)\) bằng
Hàm số \(y = \frac{{x - 7}}{{x + 4}}\) đồng biến trên khoảng