Lời giải của giáo viên
Ta có \(\underset{x\to \pm \infty }{\mathop{\lim }}\,f\left( x \right)=\underset{x\to \pm \infty }{\mathop{\lim }}\,\frac{1}{2f\left( x \right)-1}=\frac{1}{2-1}=1.\)
Suy ra đồ thị hàm số \(y=f\left( x \right)\) có 1 đường tiệm cận ngang là \(y=1.\)
Mặt khác, ta có từ bảng biến thiên suy ra phương trình \(2f\left( x \right)-1=0\Leftrightarrow f\left( x \right)=\frac{1}{2}\) có hai nghiệm phân biệt \(x=\alpha ;x=\beta \) với \(\alpha <0,5<\beta .\)
Nên \(\underset{x\to {{\alpha }^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{\alpha }^{+}}}{\mathop{\lim }}\,\frac{1}{2f\left( x \right)-1}=-\infty \) và \(\underset{x\to {{\alpha }^{-}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{\alpha }^{-}}}{\mathop{\lim }}\,\frac{1}{2f\left( x \right)-1}=+\infty \) suy ra đồ thị hàm số \(y=g\left( x \right)\) có đường tiệm cận đứng là \(x=\alpha .\)
Và \(\underset{x\to {{\beta }^{+}}}{\mathop{\lim }}\,g\left( x \right)=\underset{x\to {{\beta }^{+}}}{\mathop{\lim }}\,\frac{1}{2f\left( x \right)-1}=+\infty \) và \(\underset{x\to {{\beta }^{-}}}{\mathop{\lim }}\,g\left( x \right)=\underset{x\to {{\beta }^{-}}}{\mathop{\lim }}\,\frac{1}{2f\left( x \right)-1}=-\infty \) suy ra đồ thị hàm số \(y=g\left( x \right)\) có đường tiệm cận đứng là \(x=\beta .\)
Vậy đồ thị hàm số \(y=g\left( x \right)\) có 3 đường tiệm cận.
CÂU HỎI CÙNG CHỦ ĐỀ
Với \(a\) là số thực dương, \(\ln \left( 7a \right)-\ln \left( 3a \right)\) bằng
Cho khối trụ tròn xoay có bán kính đường tròn đáy \(R=4a. \) Hai điểm \(A\) và \(B\) di động trên hai đường tròn đáy của khối trụ. Tính thể tích \(V\) của khối trụ tròn xoay đó biết rằng độ dài lớn nhất của đoạn \(AB\) là \(10a. \)
Cho tứ diện \(ABCD\) có các cạnh \(AB,AC\) và \(AD\) đôi một vuông góc. Các điểm \(M,N,P\) lần lượt là trung điểm của các đoạn thẳng \(BC,CD,BD. \) Biết rằng \(AB=4a;AC=6a;AD=7a. \) Thể tích \(V\) của khối tứ diện \(AMNP\) bằng
Cho lăng trụ tam giác \(ABC.A'B'C'\) có đáy là tam giác đều cạnh \(2a. \) Biết \(A'\) cách đều ba đỉnh \(A,B,C\) và mặt phẳng \(\left( A'BC \right)\) vuông góc với mặt phẳng \(\left( AB'C' \right). \) Thể tích của khối lăng trụ \(ABC.A'B'C'\) tính theo \(a\) bằng
Số đường tiệm cận ngang của đồ thị hàm số \(y=\frac{\sqrt{10000-{{x}^{2}}}}{x-2}\) là
Trong khai triển \({{\left( xy-\frac{3}{{{y}^{4}}} \right)}^{12}}\) hệ só của số hạng có số mũ của \(x\) gấp 5 lần số mũ của \(y\) là
Cho hàm số \(y=\frac{x-2}{x-m}\) nghịch biến trên khoảng \(\left( -\infty ;3 \right)\) khi:
Cho hàm số \(y=\sqrt{{{x}^{3}}-3x}. \) Nhận định nào dưới đây là đúng?
Cho hàm số \(y=f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) và đồ thị hàm số \(y=f'\left( x \right)\) như hình bên. Khẳng định nào sau đây là đúng?
Cho hàm số \(y=f\left( x \right)=a{{x}^{3}}+b{{x}^{2}}+cx+d\) có đồ thị như hình vẽ.
Khi đó phương trình \(f\left( {{f}^{2}}\left( x \right) \right)=1\) có bao nhiêu nghiệm?
Số điểm cực trị của đồ thị hàm số \(y=-{{x}^{3}}+1\) là
Số giá trị nguyên của tham số \(m\) để hàm số \(y=m{{x}^{4}}-\left( m-3 \right){{x}^{2}}+{{m}^{2}}\) không có điểm cực đại là
Đường cong ở hình bên là đồ thị của hàm số nào sau đây?
Cho hàm số \(y=\frac{x+2}{x+1}\left( C \right)\) và đường thẳng \(\left( d \right):y=x+m. \) Có bao nhiêu giá trị nguyên \(m\) thuộc khoảng \(\left( -10;10 \right)\) để đường thẳng \(\left( d \right)\) cắt đồ thị \(\left( C \right)\) tại hai điểm về hai phía trục hoành?