Lời giải của giáo viên
Đặt \(g\left( x \right)=f\left( {{x}^{2}}-2x \right)\). Ta có \({g}'\left( x \right)=\left( 2x-2 \right){f}'\left( {{x}^{2}}-2x \right)\)
\(g'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l} x = 1\\ {x^2} - 2x = - 2\\ {x^2} - 2x = 1\\ {x^2} - 2x = 3 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = 1\\ {x^2} - 2x + 2 = 0\\ {x^2} - 2x - 1 = 0\\ {x^2} - 2x - 3 = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = 1\\ x = 1 \pm \sqrt 2 \\ x = - 1\\ x = 3 \end{array} \right.\)
Trong đó các nghiệm \(-1,\,\,1,\,\,3\) là nghiệm bội lẻ và \(1\pm \sqrt{2}\) là nghiệm bội chẵn. Vì vậy hàm số \({g}'\left( x \right)\) chỉ đổi dấu khi đi qua các nghiệm \(-1,\,\,1,\,\,3\)
Ta có \({g}'\left( 0 \right)=-2{f}'\left( 0 \right)<0\) (do \({f}'\left( 0 \right)>0\)).
Bảng xét dấu \({g}'\left( x \right)\)
Vậy hàm số \(y=f\left( {{x}^{2}}-2x \right)\) có đúng 1 điểm cực tiểu là \(x=1\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số bậc bốn \(y=f\left( x \right)\). Đồ thị hình bên dưới là đồ thị của đạo hàm \(f'\left( x \right)\). Hàm số \(g\left( x \right)=f\left( \sqrt{{{x}^{2}}+2x+2} \right)\) có bao nhiêu điểm cực trị ?
Cho hàm số \(y=\frac{2x-1}{x+5}\) Khi đó tiệm cận ngang của đồ thị hàm số là đường thẳng nào trong các đường thẳng sau đây?
Có bao nhiêu giao điểm của đồ thị hàm số \(y={{x}^{3}}+3x-3\) với trục Ox?
Trong không gian với hệ tọa độ \(Oxyz\), cho đường thẳng \(\left( d \right):\left\{ \begin{align} & x=3+t \\ & y=1-2t \\ & z=2 \\ \end{align} \right.\) Một vectơ chỉ phương của d là
Phương trình tham số của đường thẳng đi qua điểm \(M\left( 3;-1;2 \right)\) và có vectơ chỉ phương \(\overrightarrow{u}=\left( 4;5;-7 \right)\) là:
Tập nghiệm của bất phương trình \({{\log }_{\frac{1}{2}}}\left( x-2 \right)\ge -1\)
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
Cho tập hợp M có 30 phần tử. Số tập con gồm 5 phần tử của M là
Điểm M trong hình vẽ bên là điểm biểu diễn số phức?
Cho mặt cầu \(\left( S \right):\,{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2x+4y+2z-3=0\) Tính bán kính R của mặt cầu \(\left( S \right)\)
Gieo hai con súc sắc. Xác suất để tổng số chấm trên hai mặt bằng \(11\) là:
Trong không gian\(Oxyz\), cho hai điểm \(A\left( 2;3;-1 \right)\) và \(B\left( 0;-1;1 \right)\). Trung điểm của đoạn thẳng \(AB\) có tọa độ là
Cho hàm số \(f\left( x \right)\) có đạo hàm liên tục trên đoạn \(\left[ 1;3 \right]\) thỏa mãn \(f\left( 1 \right)=2\) và \(f\left( 3 \right)=9\). Tính \(I=\int\limits_{1}^{3}{{f}'\left( x \right)\text{d}x}\).
Cho \(\int\limits_{0}^{1}{f\left( x \right)\text{d}x}=2\) và \(\int\limits_{0}^{1}{g\left( x \right)\text{d}x}=5\), khi đó \(\int\limits_{0}^{1}{\left[ f\left( x \right)+2g\left( x \right) \right]\text{d}x}\) bằng
Cho số phức z thỏa \(\left| z \right|=1\). Gọi m, M lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của biểu thức \(P=\left| {{z}^{5}}+{{{\bar{z}}}^{3}}+6z \right|-2\left| {{z}^{4}}+1 \right|\). Tính M-m.