Cho hàm số \(y=f\left( x \right)\) có đạo hàm \({f}'\left( x \right)={{\left( x+1 \right)}^{2}}\left( x+3 \right)\left( {{x}^{2}}+2mx+5 \right)\) với mọi \(x\in \mathbb{R}\). Có bao nhiêu giá trị nguyên âm của tham số m để hàm số \(g\left( x \right)=f\left( \left| x \right| \right)\) có đúng một điểm cực trị
A. 3
B. 5
C. 4
D. 2
Lời giải của giáo viên
\(f'\left( x \right) = {\left( {x + 1} \right)^2}\left( {x + 3} \right)\left( {{x^2} + 2mx + 5} \right) = 0 \Leftrightarrow \left[ \begin{array}{l} x = - 1\\ x = - 3\\ {x^2} + 2mx + 5 = 0{\rm{ }}\left( 1 \right) \end{array} \right.\)
Ta có \(g\left( x \right) = \left\{ \begin{array}{l} f\left( x \right) & {\rm{ }}khi{\rm{ }}x \ge 0\\ \begin{array}{*{20}{c}} {f\left( { - x} \right)}&{khi x < 0} \end{array} \end{array} \right.\)
Để hàm số \(y=g\left( x \right)\) có đúng 1 điểm cực trị
\(\Leftrightarrow \) khi hàm số \(y=f\left( x \right)\) không có điểm cực trị nào thuộc khoảng \(\left( 0;+\infty \right)\)
Trường hợp 1: Phương trình \(\left( 1 \right)\) vô nghiệm hoặc có nghiệm kép
\(\Leftrightarrow {{m}^{2}}-5\le 0\Leftrightarrow -\sqrt{5}\le m\le \sqrt{5}\)(*)
Trường hợp 2: Phương trình \(\left( 1 \right)\) có hai nghiệm \({{x}_{1}},{{x}_{2}}\) phân biệt thoả mãn \({{x}_{1}}<{{x}_{2}}\le 0\)
\( \Leftrightarrow \left\{ \begin{array}{l} {m^2} - 5 > 0\\ - 2m < 0\\ 5 > 0 \end{array} \right. \Leftrightarrow m > \sqrt 5 \) (**)
Từ (*) và (**) suy ra \(m\ge -\sqrt{5}\). Vì m là số nguyên âm nên: \(m=\left\{ -2;-1 \right\}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và thỏa \(\int\limits_{-2}^{2}{f\left( \sqrt{{{x}^{2}}+5}-x \right)\text{d}x}=1,\int\limits_{1}^{5}{\frac{f\left( x \right)}{{{x}^{2}}}\text{d}x}=3.\) Tính \(\int\limits_{1}^{5}{f\left( x \right)\text{d}x}.\)
Tìm hai số thực x, y thỏa mãn \(\left( 3x+2yi \right)+\left( 3-i \right)=4x-3i\) với i là đơn vị ảo.
Cho hàm số y=f(x) xác định trên \(\mathbb{R}\) và hàm số y=f'(x) có đồ thị như hình bên. Biết rằng f'(x)<0 với mọi \(x\in \left( -\infty ;-3,4 \right)\cup \left( 9;+\infty \right).\) Có bao nhiêu giá trị nguyên dương của tham số m để hàm số g(x)=f(x)-mx+5 có đúng hai điểm cực trị.
Trong không gian Oxyz, mặt phẳng \(\left( P \right):\,x+2y-6z-1=0\) đi qua điểm nào dưới đây?
Cho hàm số f(x) có đạo hàm \(f'(x)={{x}^{2019}}{{(x-1)}^{2}}{{(x+1)}^{3}}\). Số điểm cực đại của hàm số f(x) là
Đặt \({{\log }_{5}}3=a\), khi đó \({{\log }_{9}}1125\) bằng
Cho hàm số y=f(x) có đồ thị như hình vẽ dưới đây.
Giá trị cực đại của hàm số bằng
Cho hàm số \(f\left( x \right)\) nhận giá trị dương và thỏa mãn \(f\left( 0 \right)=1, {{\left( {f}'\left( x \right) \right)}^{3}}={{e}^{x}}{{\left( f\left( x \right) \right)}^{2}},\,\forall x\in \mathbb{R}\)
Tính \(f\left( 3 \right)\)
Cho khối nón có chiều cao bằng 2a và bán kính đáy bằng a. Thể tích của khối nón đã cho bằng
Cho hàm số \(y=\frac{x+1}{2x-2}\). Khẳng định nào sau đây đúng?
Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông tại A, \(\widehat{ACB}=30{}^\circ \), biết góc giữa B'C và mặt phẳng \(\left( ACC'A' \right)\) bằng \(\alpha \) thỏa mãn \(\sin \alpha =\frac{1}{2\sqrt{5}}\). Cho khoảng cách giữa hai đường thẳng A'B và CC' bằng \(a\sqrt{3}\). Tính thể tích V của khối lăng trụ ABC.A'B'C'.
Giá trị nhỏ nhất của hàm số \(y=\sqrt{x-1}+\sqrt{2-x}+2019\) bằng
Trong không gian Oxyz cho đường thẳng \(d:\,\,\frac{x-3}{1}=\frac{y+1}{-2}=\frac{z-5}{3}\). Vectơ nào sau đây là một vectơ chỉ phương của đường thẳng d?
Cho số phức \({{z}_{1}}=2+3i,{{z}_{2}}=-4-5i\). Tính \(z={{z}_{1}}+{{z}_{2}}\).
Tổng các lập phương các nghiệm của phương trình \({{\log }_{2}}x.{{\log }_{3}}\left( 2x-1 \right)=2{{\log }_{2}}x\) bằng: