Câu hỏi Đáp án 2 năm trước 42

Cho hàm số \(y=f\left( x \right)\) có đồ thị \(y={f}'\left( x \right)\) ở hình vẽ bên. Xét hàm số \(g\left( x \right)=f\left( x \right)-\frac{1}{3}{{x}^{3}}-\frac{3}{4}{{x}^{2}}+\frac{3}{2}x+2021,\) mệnh đề nào dưới đây đúng?

A. \(\mathop {\min }\limits_{\left[ { - 3;1} \right]} g\left( x \right) = g\left( { - 1} \right)\)

Đáp án chính xác ✅

B. \(\mathop {\min }\limits_{\left[ { - 3;1} \right]} g\left( x \right) = \frac{{g\left( { - 3} \right) + g\left( 1 \right)}}{2}\)

C. \(\mathop {\min }\limits_{\left[ { - 3;1} \right]} g\left( x \right) = g\left( { - 3} \right)\)

D. \(\mathop {\min }\limits_{\left[ { - 3;1} \right]} g\left( x \right) = g\left( 1 \right)\)

Lời giải của giáo viên

verified HocOn247.com

Ta có \({g}'\left( x \right)={f}'\left( x \right)-{{x}^{2}}-\frac{3}{2}x+\frac{3}{2}={f}'\left( x \right)-\left( {{x}^{2}}+\frac{3}{2}x-\frac{3}{2} \right)\).

Vẽ parabol \(\left( P \right):y={{x}^{2}}+\frac{3}{2}x-\frac{3}{2}\). Ta thấy \(\left( P \right)\) đi qua các điểm có toạ độ \(\left( -3\,;3 \right),\left( -1\,;2 \right), \left( 1\,;1 \right)\).

+ Trên khoảng \(\left( -3\,;-1 \right)\) đồ thị hàm số \({f}'\left( x \right)\) nằm phía dưới \(\left( P \right)\) nên

 \({f}'\left( x \right)<\left( {{x}^{2}}+\frac{3}{2}x-\frac{3}{2} \right)\Rightarrow {g}'\left( x \right)<0\).

+ Trên khoảng \(\left( -1\,;1 \right)\) đồ thị hàm số \({f}'\left( x \right)\) nằm phía trên \(\left( P \right)\) nên

\({f}'\left( x \right)>\left( {{x}^{2}}+\frac{3}{2}x-\frac{3}{2} \right)\Rightarrow {g}'\left( x \right)>0\).

+ Trên khoảng \(\left( 1\,;+\infty  \right)\) đồ thị hàm số \({f}'\left( x \right)\) nằm phía dưới \(\left( P \right)\) nên

\({f}'\left( x \right)<\left( {{x}^{2}}+\frac{3}{2}x-\frac{3}{2} \right)\Rightarrow {g}'\left( x \right)<0\).

Bảng biến thiên

Từ bảng biến thiên, ta có \(\underset{\left[ -3;1 \right]}{\mathop{\min }}\,g\left( x \right)=g\left( -1 \right)\).

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho hàm số \(y=f\left( x \right)\) xác định trên \(\mathbb{R}\) và có bảng xét dấu của đạo hàm như sau.

Khi đó số cực trị của hàm số \(y=f\left( x \right)\) là

Xem lời giải » 2 năm trước 141
Câu 2: Trắc nghiệm

Có bao nhiêu cách xếp chỗ ngồi cho 4 bạn học sinh vào dãy có 4 ghế?

Xem lời giải » 2 năm trước 41
Câu 3: Trắc nghiệm

Có bao nhiêu số phức z thỏa mãn \(\left| z+2-i \right|=2\sqrt{2}\) và \({{\left( z-i \right)}^{2}}\) là số thuần ảo

Xem lời giải » 2 năm trước 40
Câu 4: Trắc nghiệm

Cho số phức z thoả mãn \(3\left( \overline{z}-i \right)-\left( 2+3i \right)z=9-16i.\) Môđun của z bằng

Xem lời giải » 2 năm trước 40
Câu 5: Trắc nghiệm

Tọa độ giao điểm của đồ  thị của hàm số \(y = {x^4} - 3{x^2} - 2\) với trục tung là 

Xem lời giải » 2 năm trước 40
Câu 6: Trắc nghiệm

Tập nghiệm của bất phương trình \({{\log }_{3}}\left( 36-{{x}^{2}} \right)\ge 3\) là

Xem lời giải » 2 năm trước 40
Câu 7: Trắc nghiệm

Cho hình chóp S.ABC có đáy là tam giác vuông tại B, cạnh bên SA vuông góc với mặt phẳng đáy, AB=2a, \(\widehat{BAC}={{60}^{0}}\) và \(SA=a\sqrt{2}\). Góc giữa đường thẳng SB và mặt phẳng \(\left( SAC \right)\) bằng

Xem lời giải » 2 năm trước 39
Câu 8: Trắc nghiệm

Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm \(A\left( 1;0;0 \right), C\left( 0;0;3 \right), B\left( 0;2;0 \right)\). Tập hợp các điểm M thỏa mãn \(M{{A}^{2}}=M{{B}^{2}}+M{{C}^{2}}\) là mặt cầu có bán kính là:

Xem lời giải » 2 năm trước 38
Câu 9: Trắc nghiệm

Cho hình chóp đều S.ABC có \(AB=a\sqrt{3}\),  khoảng cách từ A đến mặt phẳng (SBC) bằng \(\frac{3a}{4}\) . Thể tích của khối chóp S.ABC bằng

Xem lời giải » 2 năm trước 38
Câu 10: Trắc nghiệm

Cho khối lăng trụ có đáy là hình vuông cạnh a và chiều cao bằng 4a. Thể tích của khối lăng trụ đã cho bằng

Xem lời giải » 2 năm trước 38
Câu 11: Trắc nghiệm

Trong không gian Oxyz, cho mặt cầu \((S):{{(x+1)}^{2}}+{{(y+2)}^{2}}+{{(z-3)}^{2}}=9\). Tâm của (S) có tọa độ là:

Xem lời giải » 2 năm trước 38
Câu 12: Trắc nghiệm

Đường cong \(\left( C \right)\) hình bên là đồ thị của hàm số nào?

Xem lời giải » 2 năm trước 37
Câu 13: Trắc nghiệm

Nếu \(\int\limits_{0}^{3}{f(x)dx=5}\) và \(\int\limits_{7}^{3}{f(x)dx=2}\) thì \(\int\limits_{0}^{7}{f(x)dx}\) bằng

Xem lời giải » 2 năm trước 37
Câu 14: Trắc nghiệm

Cho tích phân \(\int\limits_{0}^{\frac{\pi }{2}}{\left( 4x-1+\cos x \right)\text{d}x}=\pi \left( \frac{\pi }{a}-\frac{1}{b} \right)+c\), \(\left( a,b,c\in \mathbb{Q} \right)\). Tính a-b+c

Xem lời giải » 2 năm trước 37
Câu 15: Trắc nghiệm

Cho hình lăng trụ đứng \(ABC.{A}'{B}'{C}'\) có tất cả các cạnh bằng a. Gọi M là trung điểm của AA' (tham khảo hình vẽ).

Khoảng cách từ M đến mặt phẳng \(\left( A{B}'C \right)\) bằng

Xem lời giải » 2 năm trước 37

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »