Câu hỏi Đáp án 2 năm trước 24

Cho hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9maaceaabaqbaeaabiWa % aaqaamaalaaabaWaaOaaaeaacaaIYaGaamiEaiabgUcaRiaaiIdaaS % qabaGccqGHsislcaaIYaaabaWaaOaaaeaacaWG4bGaey4kaSIaaGOm % aaWcbeaaaaaakeaacaqGRbGaaeiAaiaabMgaaeaacaWG4bGaeyOpa4 % JaeyOeI0IaaGOmaaqaaiaaicdaaeaacaqGRbGaaeiAaiaabMgaaeaa % caWG4bGaeyypa0JaeyOeI0IaaGOmaaaaaiaawUhaaaaa!512F! f\left( x \right) = \left\{ {\begin{array}{*{20}{l}} {\frac{{\sqrt {2x + 8} - 2}}{{\sqrt {x + 2} }}}&{{\rm{khi}}}&{x > - 2}\\ 0&{{\rm{khi}}}&{x = - 2} \end{array}} \right.\) . Tìm khẳng định đúng trong các khẳng định sau:

 \((I)\) \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbeaeaaci % GGSbGaaiyAaiaac2gaaSqaaiaadIhacqGHsgIRdaqadaqaaiabgkHi % TiaaikdaaiaawIcacaGLPaaadaahaaadbeqaaiabgUcaRaaaaSqaba % GccaWGMbWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaeyypa0JaaGim % aaaa!456E! \mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} f\left( x \right) = 0\) .

  \((II)\) \(f(x)\) liên tục tại \(x=-2\).

  \((III)\) \(f(x)\) gián đoạn tại  \(x=-2\).

A. Chỉ (III)

B. Chỉ (I)

C. Chỉ (I) và (II) 

Đáp án chính xác ✅

D. Chỉ (I) và (III)

Lời giải của giáo viên

verified HocOn247.com

Hàm số \(f(x)\) xác định trên nửa khoảng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaKGeaeaacq % GHsislcaaIYaGaai4oaiabgUcaRiabg6HiLcGaay5waiaawMcaaaaa % !3C81! \left[ { - 2; + \infty } \right)\).  

Ta có: \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbeaeaaci % GGSbGaaiyAaiaac2gaaSqaaiaadIhacqGHsgIRdaqadaqaaiabgkHi % TiaaikdaaiaawIcacaGLPaaadaahaaadbeqaaiabgUcaRaaaaSqaba % GccaWGMbWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaeyypa0ZaaCbe % aeaaciGGSbGaaiyAaiaac2gaaSqaaiaadIhacqGHsgIRdaqadaqaai % abgkHiTiaaikdaaiaawIcacaGLPaaadaahaaadbeqaaiabgUcaRaaa % aSqabaGcdaWcaaqaamaakaaabaGaaGOmaiaadIhacqGHRaWkcaaI4a % aaleqaaOGaeyOeI0IaaGOmaaqaamaakaaabaGaamiEaiabgUcaRiaa % ikdaaSqabaaaaaaa!56EF! \mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} \frac{{\sqrt {2x + 8} - 2}}{{\sqrt {x + 2} }}\)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0ZaaC % beaeaaciGGSbGaaiyAaiaac2gaaSqaaiaadIhacqGHsgIRdaqadaqa % aiabgkHiTiaaikdaaiaawIcacaGLPaaadaahaaadbeqaaiabgUcaRa % aaaSqabaGcdaWcaaqaaiaaikdacaWG4bGaey4kaSIaaGioaiabgkHi % TiaaisdaaeaadaGcaaqaaiaadIhacqGHRaWkcaaIYaaaleqaaOWaae % WaaeaadaGcaaqaaiaaikdacaWG4bGaey4kaSIaaGioaaWcbeaakiab % gUcaRiaaisdaaiaawIcacaGLPaaaaaaaaa!4FC6! = \mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} \frac{{2x + 8 - 4}}{{\sqrt {x + 2} \left( {\sqrt {2x + 8} + 4} \right)}}\) \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0ZaaC % beaeaaciGGSbGaaiyAaiaac2gaaSqaaiaadIhacqGHsgIRdaqadaqa % aiabgkHiTiaaikdaaiaawIcacaGLPaaadaahaaadbeqaaiabgUcaRa % aaaSqabaGcdaWcaaqaaiaaikdadaGcaaqaaiaadIhacqGHRaWkcaaI % YaaaleqaaaGcbaWaaOaaaeaacaaIYaGaamiEaiabgUcaRiaaiIdaaS % qabaGccqGHRaWkcaaI0aaaaiabg2da9iaaicdaaaa!4BB1! = \mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} \frac{{2\sqrt {x + 2} }}{{\sqrt {2x + 8} + 4}} = 0\)

Khẳng định (I) đúng.

Ta có \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbeaeaaci % GGSbGaaiyAaiaac2gaaSqaaiaadIhacqGHsgIRdaqadaqaaiabgkHi % TiaaikdaaiaawIcacaGLPaaadaahaaadbeqaaiabgUcaRaaaaSqaba % GccaWGMbWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaeyypa0ZaaCbe % aeaaciGGSbGaaiyAaiaac2gaaSqaaiaadIhacqGHsgIRdaqadaqaai % abgkHiTiaaikdaaiaawIcacaGLPaaadaahaaadbeqaaiabgkHiTaaa % aSqabaGccaWGMbWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaeyypa0 % JaamOzamaabmaabaGaeyOeI0IaaGOmaaGaayjkaiaawMcaaiabg2da % 9iaaicdaaaa!595D! \mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ - }} f\left( x \right) = f\left( { - 2} \right) = 0\) , theo định nghĩa hàm số liên tục trên một đoạn thì hàm số liên tục tại x = -2 . Khẳng định (II) đúng, khẳng định (III) sai.

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho hình chóp S.ABC có SA = SB = SC và tam giác ABC  vuông tại B. Vẽ \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiaadI % eacqGHLkIxdaqadaqaaiaadgeacaWGcbGaam4qaaGaayjkaiaawMca % aaaa!3D28! SH \bot \left( {ABC} \right)\)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiabgI % GiopaabmaabaGaamyqaiaadkeacaWGdbaacaGLOaGaayzkaaaaaa!3C23! H \in \left( {ABC} \right)\) . Khẳng định nào sau đây đúng?

Xem lời giải » 2 năm trước 36
Câu 2: Trắc nghiệm

Tìm m để phương trình sau có nghiệm \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaada % GcaaqaaiaaisdacqGHsislcaWG4baaleqaaOGaey4kaSYaaOaaaeaa % caaI0aGaey4kaSIaamiEaaWcbeaaaOGaayjkaiaawMcaamaaCaaale % qabaGaaG4maaaakiabgkHiTiaaiAdadaGcaaqaaiaaigdacaaI2aGa % eyOeI0IaamiEamaaCaaaleqabaGaaGOmaaaaaeqaaOGaey4kaSIaaG % Omaiaad2gacqGHRaWkcaaIXaGaeyypa0JaaGimaiaac6caaaa!4B96! {\left( {\sqrt {4 - x} + \sqrt {4 + x} } \right)^3} - 6\sqrt {16 - {x^2}} + 2m + 1 = 0.\)

Xem lời giải » 2 năm trước 35
Câu 3: Trắc nghiệm

Tìm hoành độ các giao điểm của đường thẳng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2 % da9iaaikdacaWG4bGaeyOeI0YaaSaaaeaacaaIXaGaaG4maaqaaiaa % isdaaaaaaa!3CE3! y = 2x - \frac{{13}}{4}\) với đồ thị hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2 % da9maalaaabaGaamiEamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaa % igdaaeaacaWG4bGaey4kaSIaaGOmaaaaaaa!3E3A! y = \frac{{{x^2} - 1}}{{x + 2}}\) .

Xem lời giải » 2 năm trước 35
Câu 4: Trắc nghiệm

Hệ số góc của tiếp tuyến của đồ thị hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiaayk % W7cqGH9aqpcaaMc8+aaSaaaeaacaWG4bWaaWbaaSqabeaacaaI0aaa % aaGcbaGaaGinaaaacaaMc8UaaGPaVlabgUcaRiaaykW7daWcaaqaai % aadIhadaahaaWcbeqaaiaaikdaaaaakeaacaaIYaaaaiaaykW7cqGH % sislcaaIXaGaaGPaVdaa!4ACA! y\, = \,\frac{{{x^4}}}{4}\,\, + \,\frac{{{x^2}}}{2}\, - 1\,\)tại điểm có hoành độ \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaWG4bWdamaaBaaaleaapeGaaGimaaWdaeqaaOGaeyypa0Zdbiab % gkHiTiaaigdaaaa!3AEC! {x_0} = - 1\) bằng :

Xem lời giải » 2 năm trước 35
Câu 5: Trắc nghiệm

Đồ thị sau đây là của hàm số nào?

Xem lời giải » 2 năm trước 34
Câu 6: Trắc nghiệm

Cho hình chóp \(S.ABCD\)có đáy \(ABCD\) là hình vuông cạnh \(a\) . Biết \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiaadg % eacqGHLkIxdaqadaqaaiaadgeacaWGcbGaam4qaiaadseaaiaawIca % caGLPaaaaaa!3DEA! SA \bot \left( {ABCD} \right)\) và \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiaadg % eacqGH9aqpcaWGHbWaaOaaaeaacaaIZaaaleqaaaaa!3A56! SA = a\sqrt 3 \). Thể tích của khối chóp \(S.ABCD\)là:

Xem lời giải » 2 năm trước 34
Câu 7: Trắc nghiệm

Cho tứ diện đều \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaadk % eacaWGdbGaamiraaaa!3912! ABCD\) , \(M\) là trung điểm của cạnh \(BC\) . Khi đó \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+ % gacaGGZbWaaeWaaeaacaWGbbGaamOqaiaacYcacaWGebGaamytaaGa % ayjkaiaawMcaaaaa!3E28! \cos \left( {AB,DM} \right)\) bằng: 

Xem lời giải » 2 năm trước 34
Câu 8: Trắc nghiệm

Đồ thị sau đây là của hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2 % da9iaadIhadaahaaWcbeqaaiaaisdaaaGccqGHsislcaaIZaGaamiE % amaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaiodaaaa!3F2D! y = {x^4} - 3{x^2} - 3\). Với giá trị nào của m thì phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa % aaleqabaGaaGinaaaakiabgkHiTiaaiodacaWG4bWaaWbaaSqabeaa % caaIYaaaaOGaey4kaSIaamyBaiabg2da9iaaicdaaaa!3F13! {x^4} - 3{x^2} + m = 0\) có ba nghiệm phân biệt?

Xem lời giải » 2 năm trước 33
Câu 9: Trắc nghiệm

Trong khai triển \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca % WG4bGaey4kaSYaaSaaaeaacaaIYaaabaWaaOqaaeaacaWG4baaleaa % aaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaI2aaaaaaa!3C37! {\left( {x + \frac{2}{{\sqrt[{}]{x}}}} \right)^6}\), hệ số của \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa % aaleqabaGaaG4maaaakiaacYcaaaa!3895! {x^3},\) \((x>0)\) là:

Xem lời giải » 2 năm trước 33
Câu 10: Trắc nghiệm

Nghiệm của phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaDa % aaleaacaWGUbaabaGaaG4maaaakiabg2da9iaaikdacaaIWaGaamOB % aaaa!3C0F! A_n^3 = 20n\) là:

Xem lời giải » 2 năm trước 32
Câu 11: Trắc nghiệm

Tìm m  để phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiGaco % hacaGGPbGaaiOBamaaCaaaleqabaGaaGOmaaaakiaadIhacqGHRaWk % caWGTbGaaiOlaiGacohacaGGPbGaaiOBaiaaikdacaWG4bGaeyypa0 % JaaGOmaiaad2gaaaa!4542! 2{\sin ^2}x + m.\sin 2x = 2m\) vô nghiệm.

Xem lời giải » 2 năm trước 32
Câu 12: Trắc nghiệm

Cho tứ diện ABCD có AB = AC  và DB = DC. Khẳng định nào sau đây đúng?

Xem lời giải » 2 năm trước 32
Câu 13: Trắc nghiệm

Có bao nhiêu số tự nhiên có sáu chữ số khác nhau từng đôi một, trong đó chữ số 5 đứng liền giữa hai chữ số 1 và 4 ?

Xem lời giải » 2 năm trước 31
Câu 14: Trắc nghiệm

Đồ thị hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2 % da9maalaaabaGaamiEamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaa % dIhacqGHRaWkcaaIXaaabaGaeyOeI0IaaGPaVlaaiwdacaWG4bWaaW % baaSqabeaacaaIYaaaaOGaeyOeI0IaaGOmaiaadIhacqGHRaWkcaaI % Zaaaaaaa!46E0 y = \frac{{{x^2} + x + 1}}{{ - \,5{x^2} - 2x + 3}}\) có bao nhiêu đường tiệm cận?

Xem lời giải » 2 năm trước 31
Câu 15: Trắc nghiệm

Trong các hàm số sau, hàm số nào đồng biến trên \(R\) .

Xem lời giải » 2 năm trước 30

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »