Cho hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9maaemaabaGaamiEamaa % CaaaleqabaGaaGinaaaakiabgkHiTiaaisdacaWG4bWaaWbaaSqabe % aacaaIZaaaaOGaey4kaSIaaGinaiaadIhadaahaaWcbeqaaiaaikda % aaGccqGHRaWkcaWGHbaacaGLhWUaayjcSdaaaa!4873! f\left( x \right) = \left| {{x^4} - 4{x^3} + 4{x^2} + a} \right|\) . Gọi M ,m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số đã cho trên đoạn \([0;2]\) . Có bao nhiêu số nguyên a thuộc đoạn \([-3;3]\) sao cho \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabgs % MiJkaaikdacaWGTbaaaa!3A29! M \le 2m\)?
A. 3
B. 7
C. 6
D. 5
Lời giải của giáo viên
Xét hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9iaadIhadaahaaWcbeqa % aiaaisdaaaGccqGHsislcaaI0aGaamiEamaaCaaaleqabaGaaG4maa % aakiabgUcaRiaaisdacaWG4bWaaWbaaSqabeaacaaIYaaaaOGaey4k % aSIaamyyaaaa!4552! g\left( x \right) = {x^4} - 4{x^3} + 4{x^2} + a\).
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4zayaafa % WaaeWaaeaacaWG4baacaGLOaGaayzkaaGaeyypa0JaaGinaiaadIha % daahaaWcbeqaaiaaiodaaaGccqGHsislcaaIXaGaaGOmaiaadIhada % ahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI4aGaamiEaaaa!441C! g'\left( x \right) = 4{x^3} - 12{x^2} + 8x\)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4zayaafa % WaaeWaaeaacaWG4baacaGLOaGaayzkaaGaeyypa0JaaGimaaaa!3B32! ;g'\left( x \right) = 0\)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyi1HSTaaG % inaiaadIhadaahaaWcbeqaaiaaiodaaaGccqGHsislcaaIXaGaaGOm % aiaadIhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI4aGaamiEai % abg2da9iaaicdaaaa!43B4! \Leftrightarrow 4{x^3} - 12{x^2} + 8x = 0\)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyi1HS9aam % qaaqaabeqaaiaadIhacqGH9aqpcaaIWaaabaGaamiEaiabg2da9iaa % igdaaeaacaWG4bGaeyypa0JaaGOmaaaacaGLBbaaaaa!418D! \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = 1\\ x = 2 \end{array} \right.\)
Bảng biến thiên
Do \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaad2 % gacqGHLjYScaWGnbGaeyOpa4JaaGimaaaa!3BFC! 2m \ge M > 0\) nên \(m > 0\) suy ra \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaabm % aabaGaamiEaaGaayjkaiaawMcaaiabgcMi5kaaicdacaaMc8UaaGPa % VlabgcGiIiaadIhacqGHiiIZdaWadaqaaiaaicdacaGG7aGaaGOmaa % Gaay5waiaaw2faaaaa!4675! g\left( x \right) \ne 0\,\,\forall x \in \left[ {0;2} \right]\)
Suy ra \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamqaaqaabe % qaaiaadggacqGHRaWkcaaIXaGaeyipaWJaaGimaaqaaiaadggacqGH % +aGpcaaIWaaaaiaawUfaaiabgsDiBpaadeaaeaqabeaacaWGHbGaey % ipaWJaeyOeI0IaaGymaaqaaiaadggacqGH+aGpcaaIWaaaaiaawUfa % aaaa!4777! \left[ \begin{array}{l} a + 1 < 0\\ a > 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} a < - 1\\ a > 0 \end{array} \right.\)
Nếu \(a < -1\) thì \(M= -a\); \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabg2 % da9iabgkHiTiaadggacqGHsislcaaIXaaaaa!3B67! m = - a - 1\)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacqGHshI3caaIYaWdaiaacIcapeGaeyOeI0IaamyyaiabgkHiTiaa % igdapaGaaiyka8qacqGHLjYScqGHsislcaWGHbGaeyi1HSTaamyyai % abgsMiJkabgkHiTiaaikdaaaa!4877! \Rightarrow 2( - a - 1) \ge - a \Leftrightarrow a \le - 2\)
Nếu \(a > 0\) thì \(M = a + 1\)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabg2 % da9iaadggaaaa!38D2! ;m = a\)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4naaa!3851! \Rightarrow \)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaadg % gacqGHLjYScaWGHbGaey4kaSIaaGymaaaa!3BDF! 2a \ge a + 1\)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyi1HSTaam % yyaiabgwMiZkaaigdaaaa!3BB7! \Leftrightarrow a \ge 1\)
Do đó \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgs % MiJkabgkHiTiaaikdaaaa!3A38! a \le - 2\) hoặc \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgw % MiZkaaigdaaaa!395B! a \ge 1\) , do a nguyên và thuộc đoạn \([-3;3]\) nên \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgI % GiopaacmaabaGaeyOeI0IaaG4maiaacUdacqGHsislcaaIYaGaai4o % aiaaigdacaGG7aGaaGOmaiaacUdacaaIZaaacaGL7bGaayzFaaaaaa!4312! a \in \left\{ { - 3; - 2;1;2;3} \right\}\) .
Vậy có 5 giá trị của a thỏa mãn đề bài.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho mặt phẳng P đi qua các điểm A ( -2; 0 ; 0),B( 0; 3; 0) ,C( 0; 0 ; -3) . Mặt phẳng (P) vuông góc với mặt phẳng nào trong các mặt phẳng sau?
Cho lăng trụ tam giác đều ABC.A'B'C' có cạnh đáy bằng a và \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiqadk % eagaqbaiabgwQiEjaadkeaceWGdbGbauaaaaa!3AD8! AB' \bot BC'\) . Tính thể tích V của khối lăng trụ đã cho.
Biết \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaaca % WG4bGaciiBaiaac6gadaqadaqaaiaadIhadaahaaWcbeqaaiaaikda % aaGccqGHRaWkcaaI5aaacaGLOaGaayzkaaGaaeizaiaadIhaaSqaai % aaicdaaeaacaaI0aaaniabgUIiYdGccqGH9aqpcaWGHbGaciiBaiaa % c6gacaaI1aGaey4kaSIaamOyaiGacYgacaGGUbGaaG4maiabgUcaRi % aadogaaaa!4E85! \int\limits_0^4 {x\ln \left( {{x^2} + 9} \right){\rm{d}}x} = a\ln 5 + b\ln 3 + c\), trong đó a,b ,c là các số nguyên. Giá trị của biểu thức T = a + b + c là
Trong không gian ( Oxyz) , cho mặt phẳng (P) đi qua điểm M(1;2;3) và cắt các trục Ox,Oy,Oz lần lượt tại các điểm A,B ,C . Viết phương trình mặt phẳng (P) sao cho M là trực tâm của tam giác ABC .
Cho đa giác đều 32 cạnh. Gọi S là tập hợp các tứ giác tạo thành có 4 đỉnh lấy từ các đỉnh của đa giác đều. Chọn ngẫu nhiên một phần tử của S. Xác suất để chọn được một hình chữ nhật là
Trong không gian với hệ tọa độ Oxyz , cho đường thẳng d vuông góc với mặt phẳng (P):4x - z + 3 = 0 . Vec-tơ nào dưới đây là một vec-tơ chỉ phương của đường thẳng d?
Trong không gian với hệ trục tọa độ Oxyz cho \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8Haaeaaca % WGHbaacaGLxdcacqGH9aqpcqGHsisldaWhcaqaaiaadMgaaiaawEni % aiabgUcaRiaaikdadaWhcaqaaiaadQgaaiaawEniaiabgkHiTiaaio % dadaWhcaqaaiaadUgaaiaawEniaaaa!45B2! \overrightarrow a = - \overrightarrow i + 2\overrightarrow j - 3\overrightarrow k \) . Tọa độ của vectơ \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8Haaeaaca % WGHbaacaGLxdcaaaa!388E! \overrightarrow a \) là:
Trong không gian với hệ trục tọa độ Oxyz, cho \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8Haaeaaca % WGpbGaamyqaaGaay51GaGaeyypa0JaaGOmamaaFiaabaGaamyAaaGa % ay51GaGaey4kaSIaaGOmamaaFiaabaGaamOAaaGaay51GaGaey4kaS % IaaGOmamaaFiaabaGaam4AaaGaay51Gaaaaa!4629! \overrightarrow {OA} = 2\overrightarrow i + 2\overrightarrow j + 2\overrightarrow k\), B( -2; 2 ; 0) và C( 4; 1 ; -1 ). Trên mặt phẳng (Oxz), điểm nào dưới đây cách đều ba điểm A, B, C.
Cho tập hợp M có 10 phần tử. Số tập con gồm 2 phần tử của M là
. Cho \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9iaadIhadaahaaWcbeqa % aiaaiodaaaGccqGHsislcaaIZaGaamiEamaaCaaaleqabaGaaGOmaa % aakiabgkHiTiaaiAdacaWG4bGaey4kaSIaaGymaaaa!443C! f\left( x \right) = {x^3} - 3{x^2} - 6x + 1\). Phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaaca % WGMbWaaeWaaeaacaWGMbWaaeWaaeaacaWG4baacaGLOaGaayzkaaGa % ey4kaSIaaGymaaGaayjkaiaawMcaaiabgUcaRiaaigdaaSqabaGccq % GH9aqpcaWGMbWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaey4kaSIa % aGOmaaaa!454C! \sqrt {f\left( {f\left( x \right) + 1} \right) + 1} = f\left( x \right) + 2\) có số nghiệm thực là
Kí hiệu \(z_{1}\) là nghiệm phức có phần ảo âm của phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGinaiaadQ % hadaahaaWcbeqaaiaaikdaaaGccqGHsislcaaIXaGaaGOnaiaadQha % cqGHRaWkcaaIXaGaaG4naiabg2da9iaaicdacaGGUaaaaa!40DB! 4{z^2} - 16z + 17 = 0.\) Trên mặt phẳng tọa độ điểm nào dưới đây là điểm biểu diễn số phức \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Daiabg2 % da9maabmaabaGaaGymaiabgUcaRiaaikdacaWGPbaacaGLOaGaayzk % aaGaamOEamaaBaaaleaacaaIXaaabeaakiabgkHiTmaalaaabaGaaG % 4maaqaaiaaikdaaaGaamyAaaaa!4219! w = \left( {1 + 2i} \right){z_1} - \frac{3}{2}i\)?
Cho hàm số \(y = f (x)\) liên tục, luôn dương trên \([0;3]\) và thỏa mãn \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpCpC0xbbL8-4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9maapehabaGaamOzamaabmaabaGaamiEaaGaayjkaiaawMcaaiaa % bsgacaWG4baaleaacaaIWaaabaGaaG4maaqdcqGHRiI8aOGaeyypa0 % JaaGinaaaa!434A! I = \int\limits_0^3 {f\left( x \right){\rm{d}}x} = 4\). Khi đó giá trị của tích phân \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpCpC0xbbL8-4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiabg2 % da9maapehabaWaaeWaaeaacaWGLbWaaWbaaSqabeaacaaIXaGaey4k % aSIaciiBaiaac6gadaqadaqaaiaadAgadaqadaqaaiaadIhaaiaawI % cacaGLPaaaaiaawIcacaGLPaaaaaGccqGHRaWkcaaI0aaacaGLOaGa % ayzkaaGaaeizaiaadIhaaSqaaiaaicdaaeaacaaIZaaaniabgUIiYd % aaaa!4AD3! K = \int\limits_0^3 {\left( {{e^{1 + \ln \left( {f\left( x \right)} \right)}} + 4} \right){\rm{d}}x} \) là:
Tìm tất cả các giá trị thực của tham số m sao cho hàm số \(y = \frac{{mx + 4}}{{x + m}}\) nghịch biến trên khoảng \(\left( { - \infty ;1} \right)\)?
Người ta trồng hoa vào phần đất được tô màu đen được giới hạn bởi cạnh AB,CD , đường trung bình MN của mảnh đất hình chữ nhật ABCD và một đường cong hình sin . Biết \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaadk % eacqGH9aqpcaaIYaGaeqiWda3aaeWaaeaacaWGTbaacaGLOaGaayzk % aaaaaa!3D7A! AB = 2\pi \left( m \right)\),AD = 2(m) . Tính diện tích phần còn lại
Cho tứ diện OABC có OA, OB, OC đôi một vuông góc và \( OB = OC = a\sqrt 6 \), OA =a . Tính góc giữa hai mặt phẳng (ABC) và (OBC) .