Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đạo hàm \(f'\left( x \right) = \left( {x + 2} \right){\left( {x - 1} \right)^{2018}}{\left( {x - 2} \right)^{2019}}\) . Khẳng định nào sau đây là đúng ?
A. Hàm số có ba điểm cực trị.
B. Hàm số nghịch biến trên khoảng \(\left( { - 2;2} \right)\)
C. Hàm số đạt cực đại tại điểm \(x = 1\) và đạt cực tiểu tại các điểm \(x \pm 2.\)
D. Hàm số đồng biến trên mỗi khoảng \(\left( {1;2} \right)\) và \(\left( {2; + \infty } \right)\)
Lời giải của giáo viên
Ta có: \(f'\left( x \right) = 0 \Leftrightarrow \left( {x + 2} \right){\left( {x - 1} \right)^{2018}}{\left( {x - 2} \right)^{2019}} = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 2\\x = 1\\x = 2\end{array} \right.\)
Trong đó \(x = - 2,\;\;x = 2\) là hai nghiệm bội lẻ, \(x = 1\) là nghiệm bội chẵn
\( \Rightarrow x = - 2;\;\;x = 2\) là hai điểm cực trị của hàm số, \(x = 1\) không là điểm cực trị.
\( \Rightarrow \) đáp án A sai.
Ta có: \(f'\left( x \right) \ge 0 \Leftrightarrow \left( {x + 2} \right){\left( {x - 1} \right)^{2018}}{\left( {x - 2} \right)^{2019}} \ge 0\)
\( \Leftrightarrow \left( {x + 2} \right){\left( {x - 2} \right)^{2019}} \ge 0 \Leftrightarrow \left[ \begin{array}{l}x \ge 2\\x \le - 2\end{array} \right.\)
\( \Rightarrow \) hàm số đồng biến trên \(\left( { - \infty ; - 2} \right)\) và \(\left( {2; + \infty } \right),\) hàm số nghịch biến trên \(\left( { - 2;\;2} \right).\)
Chọn B.
CÂU HỎI CÙNG CHỦ ĐỀ
Rút gọn biểu thức \(P = {x^{\frac{1}{2}}}\sqrt[8]{x}\).
Cho hình chóp \(S.ABC\) có đáy là tam giác \(ABC\) vuông tại \(C,\,\,CH\) vuông góc với \(AB\) tại \(H\), \(I\) là trung điểm của đoạn \(HC\). Biết \(SI\) vuông góc với mặt phẳng đáy, \(\angle ASB = {90^0}\). Gọi \(O\) là trung điểm của đoạn \(AB,\,\,O'\) là tâm mặt cầu ngoại tiếp tứ diện \(ABSI\), \(\alpha \) là góc giữa \(OO'\) và mặt phẳng \(\left( {ABC} \right)\). Tính \(\cos \alpha \).
Gọi \(n\) là số các giá trị của tham số m để bất phương trình \(\left( {2m - 4} \right)\left( {{x^3} + 2{x^2}} \right) + \left( {{m^2} - 3m + 2} \right)\left( {{x^2} + 2x} \right) - \left( {{m^3} - {m^2} - 2m} \right)\left( {x + 2} \right) < 0\) vô nghiệm. Giá trị của \(n\) bằng:
Cho hàm số \(y = {x^3} - 3m{x^2} + 6mx - 8\) có đồ thị \(\left( C \right)\). Có bao nhiểu giá trị nguyên của tham số m thuộc đoạn \(\left[ { - 5;5} \right]\) để \(\left( C \right)\) cắt trục hoành tại ba điểm phân biệt có hoành độ lập thành cấp số nhân?
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang vuông tại \(C\) và \(D\), \(\angle ABC = {30^0}\). Biết \(AC = a,\,\,CD = \dfrac{a}{2},\,\,SA = \dfrac{{a\sqrt 3 }}{2}\) và cạnh \(SA\) vuông góc với mặt phẳng đáy. Khoảng cách từ \(B\) đến mặt phẳng \(\left( {SCD} \right)\) bằng:
Đường cong trong hình vẽ bên là đồ thị của hàm số nào sau đây?
Cho hàm số \(y = {7^{\frac{x}{2}}}\) có đồ thị \(\left( C \right)\). Hàm số nào sau đây có đồ thị đối xứng với \(\left( C \right)\) qua đường thẳng có phương trình \(y = x\).
Cho hàm số \(y = \dfrac{{x + 2}}{{x - 1}}\). Giá trị \({\left( {\mathop {\min }\limits_{x \in \left[ {2;3} \right]} y} \right)^2} + {\left( {\mathop {\max }\limits_{x \in \left[ {2;3} \right]} y} \right)^2}\) bằng:
Cho khối tứ diện đều có tất cả các cạnh bằng \(2a\) . Thể tích khối tứ diện đã cho bằng:
Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = {x^2}\left( {x - 1} \right){\left( {x + 2} \right)^3}\left( {2 - x} \right)\,\,\forall x \in \mathbb{R}\). Số điểm cực trị của hàm số đã cho bằng:
Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên như hình vẽ.
Tập hợp tất cả các giá trị thực của tham số m để phương trình \(f\left( {\cos 2x} \right) - 2m - 1 = 0\) có nghiệm thuộc khoảng \(\left( { - \dfrac{\pi }{3};\dfrac{\pi }{4}} \right)\) là:
Cho hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ { - 3;4} \right]\) và có đồ thị như hình vẽ bên. Gọi \(M\) và \(m\) lần lượt là các giá trị lớn nhất và nhỏ nhất của hàm số đã cho trên đoạn \(\left[ { - 3;4} \right]\). Tính \(M + m\).
Đường cong trong hình vẽ bên là đồ thị của hàm số nào sau đây?
Có bao nhiêu số hạng là số nguyên trong khai triển của biểu thức \({\left( {\sqrt[3]{3} + \sqrt[5]{5}} \right)^{2019}}?\)
Tập nghiệm S của bất phương trình \({\left( {\tan \dfrac{\pi }{7}} \right)^{{x^2} - x - 9}} \le {\left( {\tan \dfrac{\pi }{7}} \right)^{x - 1}}\) là: