Câu hỏi Đáp án 2 năm trước 33

Cho hàm số y = f(x) có bảng biến thiên như hình bên. Phương trình \(f\left( {4x - {x^2}} \right) - 2 = 0\) có bao nhiêu nghiệm thực phân biệt?

A. 2

B. 6

C. 4

Đáp án chính xác ✅

D. 0

Lời giải của giáo viên

verified HocOn247.com

Bảng biến thiên của f(x)

Từ bảng biến thiên suy ra phương trình f(x) = 2 có ba nghiệm thực phân biệt \({x_1},{x_2},{x_3}\) với \({x_1} < 0 < {x_2} < 4 < {x_3}.\)

Do đó \(f\left( {4x - {x^2}} \right) - 2 = 0 \Leftrightarrow f\left( {4x - {x^2}} \right) = 2\left[ \begin{array}{l} 4x - {x^2} = {x_1}\,\,\left( 1 \right)\\ 4x - {x^2} = {x_2}\,\,\left( 2 \right)\\ 4x - {x^2} = {x_3}\,\,\left( 3 \right) \end{array} \right.\) với \({x_1} < 0 < {x_2} < 4 < {x_3}.\)

Xét hàm số \(g\left( x \right) = 4x - {x^2}\). Có \(g'\left( x \right) = 4 - 2x,g\left( x \right) = 0 \Leftrightarrow x = 2.\).

Bảng biến thiên của g(x):

Từ bảng biến thiên của g(x) suy ra phương trình (1) có hai nghiệm thực phân biệt, phương trình (2) có hai nghiệm thực phân biệt (không trùng với hai nghiệm của (1) do x1 < x2) và phương trình (3) vô nghiệm.

Vậy phương trình đã cho có 4 nghiệm thực phân biệt.

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y =  - {x^3} + 2{x^2} - x + 2\) trên đoạn \(\left[ { - 1;\frac{1}{2}} \right]\). Khi đó tích M.m bằng

Xem lời giải » 2 năm trước 53
Câu 2: Trắc nghiệm

Tính diện tích xung quanh của khối trụ có bán kính đáy r = 2  và độ dài đường sinh \(l = 2\sqrt 5 .\)

Xem lời giải » 2 năm trước 48
Câu 3: Trắc nghiệm

Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) đi qua điểm A(1;2;0) và chứa đường thẳng \(d:\frac{{x + 1}}{2} = \frac{y}{3} = \frac{z}{1}\) và có một véc-tơ pháp tuyến là \(\overrightarrow n  = \left( {1;a;b} \right).\) Tính a+b.

Xem lời giải » 2 năm trước 47
Câu 4: Trắc nghiệm

Khi cắt khối trụ (T) bởi một mặt phẳng song song với trục và cách trục của trụ (T) một khoảng bằng \(a\sqrt 3 \) ta được thiết diện là hình vuông có diện tích bằng 4a2. Tính thể tích V của khối trụ (T).

Xem lời giải » 2 năm trước 46
Câu 5: Trắc nghiệm

Cho hàm số y = f(x) có bảng biến thiên như hình vẽ:

Tìm tất cả các giá trị của m để phương trình f(x) = m có 3 nghiệm phân biệt.

Xem lời giải » 2 năm trước 46
Câu 6: Trắc nghiệm

Cho tích phân \(I = \int\limits_0^4 {x\sqrt {{x^2} + 9} dx} \). Khi đặt \(t = \sqrt {{x^2} + 9} \) thì tích phân đã cho trở thành

Xem lời giải » 2 năm trước 46
Câu 7: Trắc nghiệm

Tính mô-đun của số phức z = 3 + 4i.

Xem lời giải » 2 năm trước 45
Câu 8: Trắc nghiệm

Cho hàm số f(x) liên tục trên đoạn [0;5]. Nếu \(\int\limits_0^5 {f\left( x \right)dx = 1} \) thì \(\int\limits_0^5 {\left[ {3{x^2} - 2f\left( x \right)} \right]dx} \) có giá trị bằng

Xem lời giải » 2 năm trước 44
Câu 9: Trắc nghiệm

Cho mặt phẳng \(\left( \alpha \right):3x - 2y - z + 5 = 0\) và đường thẳng \(\Delta :\frac{{x - 1}}{2} = \frac{{y - 7}}{2} = \frac{{z - 3}}{4}\). Gọi \((\beta)\) là mặt phẳng chứa \(\Delta\) và song song với \((\alpha)\). Khoảng cách giữa \((\alpha)\) và \((\beta)\) là

Xem lời giải » 2 năm trước 44
Câu 10: Trắc nghiệm

Cho hàm số y = f(x) có bảng biến thiên như hình vẽ. Hỏi hàm số y = f(x) có bao nhiêu điểm cực trị?

Xem lời giải » 2 năm trước 44
Câu 11: Trắc nghiệm

Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x3, trục hoành và hai đường thẳng x = -1; x = 2 biết rằng mỗi đơn vị dài trên các trục tọa độ là 2 cm.

Xem lời giải » 2 năm trước 44
Câu 12: Trắc nghiệm

Giá trị của biểu thức \({\log _2}5.{\log _5}64\) bằng

Xem lời giải » 2 năm trước 43
Câu 13: Trắc nghiệm

Đồ thị như hình vẽ là đồ thị của hàm số nào dưới đây?

Xem lời giải » 2 năm trước 43
Câu 14: Trắc nghiệm

Số giao điểm của đồ thị hàm số \(y = \frac{{2x + 1}}{{x - 1}}\) với đường thẳng y = 2x + 3 là

Xem lời giải » 2 năm trước 42
Câu 15: Trắc nghiệm

Tiệm cận ngang của đồ thị hàm số \(y = \frac{5}{{x - 1}}\) là đường thẳng có phương trình nào dưới đây?

Xem lời giải » 2 năm trước 42

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »