Lời giải của giáo viên
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian với hệ tọa độ Oxyz , cho mặt cầu \((S):{(x - 1)^2} + {(y + 2)^2} + {(z - 3)^2} = 27\). Gọi \((\alpha )\) là mặt phẳng đi qua hai điểm \(A(0;0; - 4),B(2;0;0)\) và cắt (S) theo giao tuyến là đường tròn (C) sao cho khối nón có đỉnh là tâm của (S) và đáy là đường tròn (C) có thể tích lớn nhất . Biết rằng \((\alpha ):ax + by - z + c = 0\) . Tính \(P = a - b + c\)
Hàm số \(f(x)\) có đạo hàm trên R và \(f'\left( x \right) > 0,\forall x \in \left( {0; + \infty } \right)\), biết \(f\left( 1 \right) = 5\). Khẳng định nào sau đây có thể xảy ra?
Tập nghiệm của bất phương trình \({2^{{x^2} + 2x}} \le 8\) là
Cho hàm số \(y = f\left( x \right)\) liên tục trên R và có đạo hàm \(f'\left( x \right) = {x^4}\left( {x - 3} \right)\left( {{x^2} - 10x + m} \right)\) với mọi \(x \in R\). Có bao nhiêu số nguyên m thuộc đoạn \(\left[ {0;\,1890} \right]\) để hàm số \(g\left( x \right) = f\left( {4 - x} \right)\) nghịch biến trên khoảng \(\left( { - \infty ;\,1} \right)\)?
Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(A(1;2;1),B(2; - 1;3)\). \(M(a;b;c)\) là điểm thuộc mặt phẳng (Oxy) sao cho \(M{A^2} - 2M{B^2}\) lớn nhất . Tính \(P = a + b + c\)
Hàm số \(y = - {x^3} + 2{x^2} + (3m - 1)x + 2\) nghịch biến trên \(( - \infty ; - 1)\) khi và chỉ khi.
Với \(k\) và \(n\) là hai số nguyên dương tùy ý thỏa mãn \(k \le n\). Mệnh đề nào dưới đây Sai ?
Một lớp có 36 ghế đơn được xếp thành hình vuông 6x6. Giáo viên muốn xếp 36 học sinh, trong đó có hai anh em là Kỷ và Hợi. Tính xác suất để hai anh em Kỷ và Hợi luôn được ngồi gần nhau theo chiều dọc hoặc ngang?
Hàm số \(f\left( x \right) = {\log _3}\left( {{x^2} + x} \right)\) có đạo hàm là:
Trong không gian với hệ tọa độ Oxyz , cho tam giác ABC với \(A(1;3;4),B(2; - 1;0),C(3;1;2)\) . Tọa độ trọng tâm G của tam giác ABC là:
Trong không gian với hệ tọa độ Oxyz , cho các điểm \(A(1;0;3),B(2;3; - 4),C( - 3,1;2)\) . Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành.
Trong không gian với hệ tọa độ Oxyz , cho điểm G(1;2;3). Gọi \((P):px + qy + rz + 1 = 0(p,q,r \in R)\) là mặt phẳng qua M và cắt các trục Ox, Oy, Oz tại A, B, C sao cho G là trọng tâm của tam giác ABC . Tính \(T=p+q+r\)
Trong không gian Oxyz, mặt phẳng (Oyz) có phương trình là
Họ nguyên hàm của hàm số \(f(x) = {{\rm{e}}^x} - 2x\) là