Cho hàm số y =f(x) có đồ thị như hình vẽ bên dưới. Khẳng định nào sau đây là đúng?
A. \(f\left( {1,5} \right) < 0 < f\left( {2,5} \right).\)
B. \(f\left( {1,5} \right) < 0,f\left( {2,5} \right) < 0.\)
C. \(f\left( {1,5} \right) > 0,f\left( {2,5} \right) > 0.\)
D. \(f\left( {1,5} \right) > 0 > f\left( {2,5} \right).\)
Lời giải của giáo viên
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số bậc ba f(x) và \(g\left( x \right) = f\left( {m{x^2} + nx + p} \right)\left( {m,n,p \in Q} \right)\) có đồ thị như hình dưới (Đường nét liền là đồ thị hàm số f(x) , nét đứt là đồ thị của hàm g(x) đường thẳng \(x = - \frac{1}{2}\) là trục đối xứng của đồ thị hàm số g(x)
Giá trị của biểu thức \(P = \left( {n + m} \right)\left( {m + p} \right)\left( {p + 2n} \right)\) bằng bao nhiêu?
Cho hình chóp S.ABC có đáy ABC là tam giác cân tại A, Mặt bên (SAB) là tam giác đều và nằm trong mặt phẳng vuông góc với mặt đáy. Thể tích V của khối chóp S.ABC là
Cho hàm số y = f(x) xác định và liên tục trên khoảng \(\left( { - \infty ;\frac{1}{2}} \right)\) và \(\left( {\frac{1}{2}; + \infty } \right).\) Đồ thị hàm số y = f(x) là đường cong trong hình vẽ bên.
Tìm mệnh đề đúng trong các mệnh đề sau
Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông, E là điểm đối xứng của D qua trung điểm SA. Gọi M, N lần lượt là trung điểm của AE và BC. Góc giữa hai đường thẳng MN và BD bằng
Cho đồ thị (C) của hàm số \(y' = \left( {1 + x} \right){\left( {x + 2} \right)^2}{\left( {x - 3} \right)^3}\left( {1 - {x^2}} \right).\) Trong các mệnh đề sau, tìm mệnh đề sai:
Cho hàm số \(y = {x^3} - {x^2} - mx + 1\) có đồ thị (C). Tìm tham số m để (C) cắt trục Ox tại 3 điểm phân biệt
Cho tứ diện OABC có OA, OB, OC đôi một vuông góc và OA = a,OB = b,OC = c. Tính thể tích khói tứ diện OABC.
Cho các Parabol có các đỉnh lần lượt là I1, I2. Gọi A, B là giao điểm của (P1) và Ox. Biết rằng 4 điểm A, B, I1, I2 tạo thành tứ giác lồi có diện tích bằng 10. Tính diện tích S của tam giác IAB với I là đỉnh của Parabol (P): \(y = h\left( x \right) = f\left( x \right) + g\left( x \right).\), \(\left( {{P_1}} \right):y = f\left( x \right) = \frac{1}{4}{x^2} - x,\left( {{P_2}} \right):y = g\left( x \right) = a{x^2} - 4ax + b\left( {a > 0} \right)\)
Trong các đường tròn sau đây, đường tròn nào tiếp xúc với trục Ox?
Đồ thị sau đây của hàm số \(y = {x^4} - 3{x^2} - 3.\) Với giá trị nào của m thì phương trình \({x^4} - 3{x^2} + m = 0\) có ba nghiệm phân biệt?
Cho hàm số \(y = \frac{{{x^4}}}{2} - 3{x^2} + \frac{5}{2},\) có đồ thị (C) và điểm \(M \in \left( C \right)\) có hoành độ \({x_M} = a.\) Có bao nhiêu giá trị nguyên của tham số a để tiếp tuyến của (C) tại M cắt (C) tại hai điểm phân biệt khác M.
Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông tại B, AB = BC = a, \(BB' = a\sqrt 3 .\) Tính góc giữa đường thẳng A'B và mặt \(\left( {BCC'B'} \right).\)
Một đội gồm 5 nam và 8 nữ. lập một nhóm gồm 4 người hát tốp ca. Tính xác suất để bốn người được chọn có ít nhất 3 nữ.
Có 9 tấm thẻ đánh số từ 1 đến 9. Chọn ngẫu nhiên ra hai tấm thẻ. Tính xác suất để tích của hai số trên hai tấm thẻ là một số chẵn.
Tính cosin góc giữa 2 đường thẳng \({d_1}:x + 2y - 7 = 0,{d_2}:2x - 4y + 9 = 0.\)