Cho hàm số y = f(x) xác định và liên tục trên \(( - \infty ;0),\,(0; + \infty )\) có bảng biến thiên như sau:
Mệnh đề nào sau đây đúng ?
A. f( -3) > f( -2).
B. Hàm số đồng biến trên khoảng \((2; + \infty )\).
C. Đường thẳng x = 2 là tiệm cận đứng của đồ thị hàm số.
D. Hàm số có giá trị nhỏ nhất bằng 2.
Lời giải của giáo viên
Dễ thấy hàm số nghịch biến trên \(\left( { - \infty ;0} \right)\), mà \(-3,-2\in \left( { - \infty ;0} \right); - 3 < - 2\) nên \(f\left( { - 3} \right) > f\left( { - 2} \right)\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho lăng trụ \(ABCD.A_1B_1C_1D_1\) , đáy là hình chữ nhật ,AB = a ,\(AD = a\sqrt 3 \). Hình chiếu vuông góc của \(A_1\) trên mp(ABCD) trùng với giao điểm của AC và BD. Góc giữa \((ADD_1A_1)\) và (ABCD) bằng \(60^o\) .Tính thể tích khối lăng trụ đã cho:
Tập hợp các điểm biểu diễn số phức z thỏa mãn \(|z + 1 + i|\, \le 2\) là;
Nghiệm của bất phương trình \({\log _2}({3^x} - 2) < 0\) là:
Giá trị lớn nhất của hàm số \(y = 1 + \sqrt {4x - {x^2}} \) là:
Cho hàm số \(y = {e^x}(\sin x - \cos x)\). Ta có y’ bằng:
Thể tích \(V\) của khối lập phương \(ABCD.A'B'C'D'\), biết \(AB = 2a\) là:
Rút gọn biểu thức \(P = {a^{{5 \over 3}}}:\sqrt a \,\,\,\,\,(a > 0)\) .
Tìm số giao điểm của đồ thị hàm số \(y = x + {2 \over {x - 1}}\) và đường thẳng y = 2x.
Bề mặt xung quanh của một hình trụ trải trên mặt phẳng là một hình vuông cạnh a. Thể tích của khối trụ giới hạn bởi hình trụ này bằng.
Giá trị lớn nhất của hàm số \(y = {x^4} - 2{x^2} + 1\) trên đoạn [0 ; 2] là:
Cho \(\overline z = \left( {5 - 2i} \right)\left( { - 3 + 2i} \right)\). Giá trị của \(2|z| - 5\sqrt {377} \) bằng :
Tính tích phân \(\int\limits_a^{\dfrac{\pi }{2} - a} {{\sin }^2}x\,dx;\,\,\dfrac{\pi }{2} > a > 0 \)
Đường tiệm cận ngang của đồ thị hàm số \(y = {{2x - 6} \over {x - 2}}\) là
Cho hình chóp S.ABCD có đáy ABC là tam giác vuông tại B và SA⊥(ABC) điểm nào sau đây là tâm của mặt cầu qua các điểm S, A, B, C?