Lời giải của giáo viên
Ta có
\(\begin{array}{l} y = {x^4} - 2{x^2} + 1\\ \Rightarrow y' = 4{x^3} - 4x\\ y' = 0 \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = \pm 1 \end{array} \right. \end{array}\)
Khi đó gọi ba điểm cực trị của đồ thị hàm số lần lượt là A(0;1), B(1;0), C(-1;0)
Tam giác ABC là tam giác cân tại A.
Do đó
\({S_{ABC}} = \frac{1}{2}d\left( {A;BC} \right).BC = 1\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y=f(x)\) có đạo hàm \(f'\left( x \right) = \left( {{x^2} - 1} \right)\left( {x - 4} \right)\) với mọi \(x \in R.\) Hàm số \(g\left( x \right) = f\left( {3 - x} \right)\) có bao nhiêu điểm cực đại?
Cho hàm số \(y=f(x)\) có đồ thị như như hình vẽ bên dưới. Hàm số \(y=f(x)\) nghịch biến trên khoảng nào dưới đây?
Cho hàm số \(y=f(x)\) có bảng biến thiên như hình bên.
Tọa độ điểm cực đại của đồ thị hàm số \(y=f(x)\) là
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \(\left( P \right):2x - z + 1 = 0\). Tọa độ một vectơ pháp tuyến của mặt phẳng (P) là
Cho hàm số \(y=x^4-2x^2-3\) có đồ thị như hình bên dưới. Với giá trị nào của tham số m thì phương trình \(x^4-2x^2-3=2m-4\) có hai nghiệm phân biệt.
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\frac{{x - 1}}{1} = \frac{{y + 2}}{{ - 1}} = \frac{z}{2}\). Mặt phẳng (P) đi qua điểm M(2;0;-1) và vuông góc với d có phương trình là
Cho \(x, y\) là các số thực dương thỏa mãn \({\log _2}\frac{{{x^2} + 5{y^2}}}{{2{x^2} + 10xy + {y^2}}} + 1 + {x^2} - 10xy + 9{y^2} \le 0\). Gọi \(M, m\) lần lượt là giá trị lớn nhất ,giá trị nhỏ nhất của \(P = \frac{{{x^2} + xy + 9{y^2}}}{{xy + {y^2}}}\) .Tính \(T = 10M - m\) ?
Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm \(A( - 1;3;4),B(9; - 7;2)\). Tìm trên trục Ox tọa độ điểm M sao cho \(M{A^2} + M{B^2}\) đạt giá trị nhỏ nhất.
Cho hàm số \(y=f(x)\) có bảng biến thiên như sau
Tìm giá trị lớn nhất của hàm số \(g\left( x \right) = f\left( {{x^3} - 3x} \right) - \frac{1}{5}{x^5} - \frac{2}{3}{x^3} + 3x - \frac{2}{{15}}\) trên đoạn [-1;2] ?
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu có phương trình \({x^2} + {y^2} + {z^2} + 2x - 6y - 6 = 0\) Tìm tọa độ tâm I và bán kính R của mặt cầu đó.
Một lô hàng gồm 30 sản phẩm trong đó có 20 sản phẩm tốt và 10 sản phẩm xấu. Lấy ngẫu nhiên 3 sản phẩm trong lô hàng. Tính xác suất để 3 sản phẩm lấy ra có ít nhất một sản phẩm tốt.
Cho khối chóp S.ABC có \(\widehat {ASB} = \widehat {BSC} = \widehat {CSA} = 60^\circ ,\) \(SA = a,SB = 2a,SC = 4a\). Tính thể tích khối chóp S.ABC theo \(a\).
Cho hàm số \(y=f(x)\) có bảng biến thiên như sau:
Khẳng định nào sau đây là đúng?
Có bao nhiêu số tự nhiên có hai chữ số, các chữ số khác nhau và đều khác 0?