Câu hỏi Đáp án 2 năm trước 42

Cho hệ phương trình \(\left\{ \begin{array}{l}{2^{x - y}} - {2^y} + x = 2y\\{2^x} + 1 = \left( {{m^2} + 2} \right){.2^y}.\sqrt {1 - {y^2}} \end{array} \right.\,\,\left( 1 \right)\), \(m\) là tham số. Gọi \(S\) là tập các giá trị nguyên để hệ \(\left( 1 \right)\) có một nghiệm duy nhất. Tập S có bao nhiêu phần tử? 

A. \(0\)   

B. \(1\) 

Đáp án chính xác ✅

C. \(3\) 

D. \(2\)   

Lời giải của giáo viên

verified HocOn247.com

ĐK : \(1 - {y^2} \ge 0 \Leftrightarrow y \in \left[ { - 1;1} \right]\)

+ Xét phương trình \({2^{x - y}} - {2^y} + x = 2y \Leftrightarrow {2^{x - y}} + x - y = {2^y} + y\)

Xét hàm số \(f\left( t \right) = {2^t} + t \Rightarrow f'\left( t \right) = {2^t}.\ln 2 + 1 > 0;\,\forall t\)  nên hàm số \(f\left( t \right)\) đồng biến trên \(\mathbb{R}\).

Từ đó \({2^{x - y}} + x - y = {2^y} + y\)\( \Rightarrow f\left( {x - y} \right) = f\left( y \right) \Leftrightarrow x - y = y \Leftrightarrow x = 2y\)

+ Thay \(x = 2y\) vào phương trình \({2^x} + 1 = \left( {{m^2} + 2} \right){.2^y}.\sqrt {1 - {y^2}} \)  ta được

\({2^{2y}} + 1 = \left( {{m^2} + 2} \right){.2^y}.\sqrt {1 - {y^2}}  \Leftrightarrow {4^y} + 1 = \left( {{m^2} + 2} \right){.2^y}.\sqrt {1 - {y^2}} \) (*)

Để hệ phương trình (1) có một nghiệm duy nhất thì phương trình (*) có nghiệm duy nhất \(y \in \left[ { - 1;1} \right]\)

Giả sử \({y_0} \in \left[ { - 1;1} \right]\)  là một nghiệm của phương trình (*) thì  ta có \({4^{{y_0}}} + 1 = \left( {{m^2} + 2} \right){.2^{{y_0}}}.\sqrt {1 - {y_0}^2} \)  (**)

Xét với \( - {y_0}\) ta có  \({4^{ - {y_0}}} + 1 = \left( {{m^2} + 2} \right){.2^{ - {y_0}}}.\sqrt {1 - {{\left( { - {y_0}} \right)}^2}}  \Leftrightarrow \dfrac{1}{{{4^{{y_0}}}}} + 1 = \left( {{m^2} + 2} \right)\dfrac{1}{{{2^{{y_0}}}}}\sqrt {1 - y_0^2} \)

\( \Leftrightarrow 1 + {4^{{y_0}}} = \left( {{m^2} + 2} \right){.2^{{y_0}}}.\sqrt {1 - {y_0}^2} \) (đúng do (**)) hay \( - {y_0}\) cũng là nghiệm của phương trình (*).

Do vậy để (*) có nghiệm duy nhất thì \({y_0} =  - {y_0} \Leftrightarrow {y_0} = 0\). Thay \(y = 0\) vào (*) ta được \({4^0} + 1 = \left( {{m^2} + 2} \right){.2^0}\sqrt {1 - {0^2}}  \Leftrightarrow {m^2} + 2 = 2 \Leftrightarrow m = 0.\)

Thử lại : Thay \(m = 0\) vào (*) ta được \({4^y} + 1 = {2.2^y}\sqrt {1 - {y^2}}  \Leftrightarrow {2^y} + \dfrac{1}{{{2^y}}} = 2\sqrt {1 - {y^2}} \,(***)\)

Nhận thấy rằng VT(***)\( = {2^y} + \dfrac{1}{{{2^y}}}\mathop  \ge \limits^{C\^o  - si} 2\sqrt {{2^y}.\dfrac{1}{{{2^y}}}}  \Leftrightarrow VT\left( {***} \right) \ge 2\) , dấu  xảy ra \( \Leftrightarrow {2^y} = \dfrac{1}{{{2^y}}} \Leftrightarrow y = 0\)

Và \(VP\left( {***} \right) = 2\sqrt {1 - {y^2}}  \le 2 \Leftrightarrow VP\left( {***} \right) = 2 \Leftrightarrow y = 0\)

Vậy phương trình (***) có nghiệm duy nhất \(y = 0\).

Kết luận : Với \(m = 0\) thì hệ đã cho có nghiệm duy nhất nên tập S có một phần tử.

Chọn B. 

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Tính theo \(a\) thể tích của một khối trụ có bán kính đáy là \(a\), chiều cao bằng \(2a\). 

Xem lời giải » 2 năm trước 44
Câu 2: Trắc nghiệm

Cho hàm số \(y = a{x^4} + b{x^2} + c\) có đồ thị như hình vẽ bên. Tìm kết luận đúng.

Xem lời giải » 2 năm trước 43
Câu 3: Trắc nghiệm

Bảng biến thiên ở hình bên là của một trong bốn hàm số dưới đây. Tìm hàm số đó.

Xem lời giải » 2 năm trước 42
Câu 4: Trắc nghiệm

Tập nghiệm của phương trình \({\log _{0,25}}\left( {{x^2} - 3x} \right) =  - 1\) là

Xem lời giải » 2 năm trước 42
Câu 5: Trắc nghiệm

Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ bên. Phương trình \(2f\left( x \right) - 5 = 0\) có bao nhiêu nghiệm âm?

Xem lời giải » 2 năm trước 41
Câu 6: Trắc nghiệm

Cho hình lập phương \(ABCD.A'B'C'D'.\) Có bao nhiêu mặt trụ tròn xoay đi qua sáu đỉnh \(A,B,D,\,A'\,,B'\,,D'\,?\)

Xem lời giải » 2 năm trước 41
Câu 7: Trắc nghiệm

Cho hàm số \(f\left( x \right)\) có đồ thị như hình vẽ bên. Bất phương trình \(f\left( {{e^x}} \right) < m\left( {3{e^x} + 2019} \right)\) có nghiệm \(x \in \left( {0;1} \right)\) khi và chỉ khi


 

 

Xem lời giải » 2 năm trước 41
Câu 8: Trắc nghiệm

Hình chóp tam giác đều \(S.ABC\) có cạnh đáy là \(a\) và mặt bên tạo với đáy góc \({45^0}\). Tính theo \(a\) thể tích khối chóp \(S.ABC\).

Xem lời giải » 2 năm trước 40
Câu 9: Trắc nghiệm

Hình lập phương có độ dài đường chéo là \(6\) thì có thể tích là 

Xem lời giải » 2 năm trước 40
Câu 10: Trắc nghiệm

Biết \(F\left( x \right) = \left( {a\,{x^2} + bx + c} \right){e^{ - x}}\) là một nguyên hàm của hàm số \(f\left( x \right) = \left( {2{x^2} - 5x + 2} \right){e^{ - x}}\) trên \(\mathbb{R}\) . Giá trị của biểu thức \(f\left( {F\left( 0 \right)} \right)\) bằng:

Xem lời giải » 2 năm trước 40
Câu 11: Trắc nghiệm

Với \(n\) là số nguyên dương, biểu thức \(T = C_n^0 + C_n^1 + ... + C_n^n\)  bằng

Xem lời giải » 2 năm trước 40
Câu 12: Trắc nghiệm

Cho hàm số \(f\left( x \right) = {x^3} - 3{x^2} + 8\). Tính tổng các giá trị nguyên của \(m\) để phương trình \(f\left( {\left| {x - 1} \right|} \right) + m = 2\) có đúng \(3\) nghiệm phân biệt.

Xem lời giải » 2 năm trước 39
Câu 13: Trắc nghiệm

Cho khối lập phương \(ABCD.A'B'C'D'.\) Cắt khối lập phương trên bởi các mặt phẳng \(\left( {AB'D'} \right)\) và \(\left( {C'BD} \right)\) ta được ba khối đa diện. Xét các mệnh đề sau :     

(I) : Ba khối đa diện thu được gồm hai khối chóp tam giác đều và một khối lăng trụ tam giác.     

(II) : Ba khối đa diện thu được gồm hai khối tứ diện và một khối bát diện đều.     

(III) : Trong ba khối đa diện thu được có hai khối đa diện bằng nhau.Số mệnh đề đúng là :

Xem lời giải » 2 năm trước 39
Câu 14: Trắc nghiệm

Cho hình lập phương \(ABCD.A'B'C'D'\) cạnh \(a\). Gọi \(M,N\) lần lượt là trung điểm của \(BC\) và \(A'B'\). Mặt phẳng \(\left( {MND'} \right)\) chia khối lập phương thành hai khối đa diện, trong đó khối chứa điểm \(C\) gọi là \(\left( H \right)\). Tính thể tích khối \(\left( H \right)\).

Xem lời giải » 2 năm trước 39
Câu 15: Trắc nghiệm

Hệ số của \({x^5}\) trong khai triển biểu thức \({\left( {x + 3} \right)^8} - {x^2}{\left( {2 - x} \right)^5}\) thành đa thức là: 

Xem lời giải » 2 năm trước 39

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »