Câu hỏi Đáp án 2 năm trước 43

Cho hình chóp đều S.ABCD, cạnh đáy bằng a, góc giữa mặt bên và mặt đáy là 60°. Tính khoảng cách từ điểm B đến mặt phẳng (SCD).

A. a/4

B. \(\frac{{a\sqrt 3 }}{4}\)

C. \(\frac{{a\sqrt 3 }}{2}\)

Đáp án chính xác ✅

D. a/2

Lời giải của giáo viên

verified HocOn247.com

* Ta có: \(\frac{{d\left( {B;\left( {SCD} \right)} \right)}}{{d\left( {O;\left( {SCD} \right)} \right)}} = \frac{{BD}}{{OD}} = 2 \Rightarrow d\left( {B;\left( {SCD} \right)} \right) = 2.d\left( {O;\left( {SCD} \right)} \right) = 2OH\). Trong đó H là hình chiếu vuông góc của O lên (SCD)

* Gọi I là trung điểm của CD ta có:

\(\left\{ \begin{array}{l}
SI \bot CD\\
OI \bot CD
\end{array} \right. \Rightarrow \left( {\left( {SCD} \right);\left( {ABCD} \right)} \right) = \left( {OI;SI} \right) = \widehat {SIO} = 60^\circ \)

.Xét tam giác SOI vuông tại O ta có: \(SO = OI.\tan 60 = \frac{{a\sqrt 3 }}{2}\)

* Do SOCD là tứ diện vuông tại O nên:

\(\begin{array}{l}
\frac{1}{{O{H^2}}} = \frac{1}{{O{C^2}}} + \frac{1}{{O{D^2}}} + \frac{1}{{O{S^2}}} = \frac{2}{{{a^2}}} + \frac{2}{{{a^2}}} + \frac{4}{{3{a^2}}} = \frac{{16}}{{3{a^2}}}\\
 \Rightarrow OH = \frac{{a\sqrt 3 }}{4} \Rightarrow d\left( {B;\left( {SCD} \right)} \right) = \frac{{a\sqrt 3 }}{2}
\end{array}\).

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho cấp số cộng (un) có số hạng tổng quát là un = 3n - 2. Tìm công sai d của cấp số cộng.

Xem lời giải » 2 năm trước 48
Câu 2: Trắc nghiệm

Tính đạo hàm của hàm số \(y = \tan \left( {\frac{\pi }{4} - x} \right)\):

Xem lời giải » 2 năm trước 47
Câu 3: Trắc nghiệm

Cho hàm số y = f(x) xác định trên R và hàm số y = f’(x)  có đồ thị như hình vẽ. Tìm số điểm cực trị của hàm số \(y = f\left( {{x^2} - 3} \right)\).

Xem lời giải » 2 năm trước 45
Câu 4: Trắc nghiệm

Giá trị nhỏ nhất m và giá trị lớn nhất M của hàm số \(y = \frac{{\sin x + 2\cos x + 1}}{{\sin x + \cos x + 2}}\) là

Xem lời giải » 2 năm trước 45
Câu 5: Trắc nghiệm

Trên mặt phẳng tọa độ Oxy, cho tam giác ABC biết \(A\left( {1;3} \right),B\left( { - 2; - 2} \right),C\left( {3;1} \right)\). Tính cosin góc A của tam giác.

Xem lời giải » 2 năm trước 45
Câu 6: Trắc nghiệm

Đường cong trong hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?

Xem lời giải » 2 năm trước 45
Câu 7: Trắc nghiệm

Cho cấp số nhân (un) có u1 = -3, công bội q = -2. Hỏi -192 là số hạng thứ mấy của (un) ?

Xem lời giải » 2 năm trước 44
Câu 8: Trắc nghiệm

Trong không gian cho bốn điểm không đồng phẳng. Có thể xác định được bao nhiêu mặt phẳng phân biệt từ các điểm đã cho?

Xem lời giải » 2 năm trước 44
Câu 9: Trắc nghiệm

Trong mặt phẳng Oxy cho đường thẳng d có phương trình 2x - y + 1 = 0. Phép tịnh tiến theo \(\overrightarrow v \) nào sau đây biến đường thẳng d thành chính nó?

Xem lời giải » 2 năm trước 44
Câu 10: Trắc nghiệm

Cho hình lăng trụ ABC.A’B’C’ có đáy ABC là tam giác đều cạnh a, \(AA' = \frac{{3a}}{2}\). Biết rằng hình chiếu vuông góc của A' lên (ABC) là trung điểm BC. Tính thể tích V của khối lăng trụ đó.

Xem lời giải » 2 năm trước 43
Câu 11: Trắc nghiệm

Tiệm cận ngang của đồ thị hàm số \(y = \frac{{x - 3}}{{x - 1}}\) là đường thẳng có phương trình?

Xem lời giải » 2 năm trước 43
Câu 12: Trắc nghiệm

Khối đa diện đều có 12 mặt thì có số cạnh là:

Xem lời giải » 2 năm trước 42
Câu 13: Trắc nghiệm

Cho tập \(A = \left\{ {0;2;4;6;8} \right\}\); \(B = \left\{ {3;4;5;6;7} \right\}\). Tập A \ B là

Xem lời giải » 2 năm trước 42
Câu 14: Trắc nghiệm

Đồ thị hàm số \(y = \frac{{5x + 1 - \sqrt {x + 1} }}{{{x^2} + 2x}}\) có tất cả bao nhiêu đường tiệm cận?

Xem lời giải » 2 năm trước 41
Câu 15: Trắc nghiệm

Cho phương trình:

\({\sin ^3}x + 2\sin x + 3 = \left( {2{{\cos }^3}x + m} \right)\sqrt {2{{\cos }^3}x + m - 2}  + 2{\cos ^3}x + {\cos ^2}x + m\).

Có bao nhiêu giá trị nguyên của tham số m để phương trình trên có đúng 1 nghiệm \(x \in \left[ {0;\frac{{2\pi }}{3}} \right)\)?

Xem lời giải » 2 năm trước 41

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »