Cho hình chóp đều S.ABCD có cạnh đáy bằng a, cạnh bên bằng 2a và O là tâm của đáy. Gọi M, N, P, Q lần lượt là các điểm đối xứng với O qua trọng tâm của tam giác SAB, SBC, SCD, SDA và S’ là điểm đối xứng của S qua O. Thể tích khối chóp S’.MNPQ bằng
A. \(\frac{40\sqrt{14}{{a}^{3}}}{81}.\)
B. \(\frac{20\sqrt{14}{{a}^{3}}}{81}.\)
C. \(\frac{10\sqrt{14}{{a}^{3}}}{81}.\)
D. \(\frac{2\sqrt{14}{{a}^{3}}}{9}.\)
Lời giải của giáo viên
Gọi \({G_1},{G_2},{G_3},{G_4}\) lần lượt là trọng tâm \(\Delta SAB,\Delta SBC,\Delta SCD,\Delta SDA\).
E, F, G, H lần lượt là trung điểm của các cạnh AB,BC,CD,DA
Ta có \({S_{MNPQ}} = 4{S_{{G_1}{G_2}{G_3}{G_4}}} = 4.\frac{4}{9}{S_{EFGH}} = 4.\frac{4}{9}.\frac{1}{2}EG.HF = \frac{{8{a^2}}}{9}\).
\(\begin{array}{l}
d\left( {S',\left( {MNPQ} \right)} \right) = d\left( {S',\left( {ABCD} \right)} \right) + d\left( {O,\left( {MNPQ} \right)} \right)\\
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = d\left( {S,\left( {ABCD} \right)} \right) + 2d\left( {O,\left( {{G_1}{G_2}{G_3}{G_4}} \right)} \right)\\
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = d\left( {S,\left( {ABCD} \right)} \right) + \frac{2}{3}d\left( {S,\left( {ABCD} \right)} \right)\\
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{5}{3}d\left( {S,\left( {ABCD} \right)} \right) = \frac{{5a\sqrt {14} }}{6}
\end{array}\)
Vậy \({V_{S'.MNPQ}} = \frac{1}{3} \cdot \frac{{5a\sqrt {14} }}{6} \cdot \frac{{8{a^2}}}{9} = \frac{{20{a^3}\sqrt {14} }}{{81}}\).
CÂU HỎI CÙNG CHỦ ĐỀ
Với a, b là các số thực dương tùy ý và \(a\ne 1,\,\,{{\log }_{{{a}^{5}}}}b\) bằng
Trong không gian Oxyz, hình chiếu vuông góc của điểm A(3;2;1) trên trục Ox có tọa độ là
Cho hàm số f(x) có bảng biến thiên sau:
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Trong không gian Oxyz, cho ba điểm A(3;0;0), B(0;1;0) và C(0;0;-2). Mặt phẳng (ABC) có phương trình là
Cho hai số phức \({{z}_{1}}=3-2i\) và \({{z}_{2}}=2+i.\) Số phức \({{z}_{1}}+{{z}_{2}}\) bằng
Trong không gian Oxyz, cho mặt cầu \(\left( S \right):\,\,\,{{x}^{2}}+{{y}^{2}}+{{\left( z+2 \right)}^{2}}=9.\) Bán kính của (S) bằng
Xét các số thực không âm x và y thỏa mãn \(2x+y{{.4}^{x+y-1}}\ge 3.\) Giá trị nhỏ nhất của biểu thức \(P={{x}^{2}}+{{y}^{2}}+4x+6y\) bằng
Có bao nhiêu cách xếp 6 học sinh thành một hàng dọc?
Giá trị nhỏ nhất của hàm số \(f(x)={{x}^{3}}-24x\) trên đoạn [2;19] bằng
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
Trên mặt phẳng tọa độ, biết M(-3;1) là điểm biểu diễn số phức z. Phần thực của z bằng
Cho hình lăng trụ đứng ABC.A’B’C’ có tất cả các cạnh bằng a. Gọi M là trung điểm của CC’ (tham khảo hình bên). Khoảng cách từ M đến mặt phẳng (A’BC) bằng
Cho cấp số nhân \(\left( {{u}_{n}} \right)\) với \({{u}_{1}}=3\) và công bội \(q=2.\) Giá trị của \({{u}_{2}}\) bằng