Câu hỏi Đáp án 2 năm trước 27

Cho hình chóp S.ABC có đáy là \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam % yqaiaadkeacaWGdbaaaa!39AE! \Delta ABC\) vuông cân ở B, \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaado % eacqGH9aqpcaWGHbWaaOaaaeaacaaIYaaaleqaaOGaaiilaiaaykW7 % aaa!3C89! AC = a\sqrt 2 ,\,\)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiaadg % eacqGHLkIxdaqadaqaaiaadgeacaWGcbGaam4qaaGaayjkaiaawMca % aiaacYcaaaa!3DD0! SA \bot \left( {ABC} \right),\) SA = a. Gọi  G là trọng tâm của \(\Delta SBC\) , \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiaadc % hadaqadaqaaiabeg7aHbGaayjkaiaawMcaaaaa!3B02! mp\left( \alpha \right)\) đi qua AG và song song với  BC chia khối chóp thành hai phần. Gọi V là thể tích của khối đa diện không chứa đỉnh S. Tính V

A. \(% MathType!MTEF!2!1!+-
% feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
% aI0aGaamyyamaaCaaaleqabaGaaG4maaaaaOqaaiaaiMdaaaGaaiOl
% aaaa!3A10!
\frac{{4{a^3}}}{9}.\)

B. \(\frac{{4{a^3}}}{27}.\)

C. \(\frac{{5{a^3}}}{54}.\)

Đáp án chính xác ✅

D. \(\frac{{2{a^3}}}{9}.\)

Lời giải của giáo viên

verified HocOn247.com

Trong mặt phẳng (SBC) . Qua G kẻ đường thẳng song song với BC và lần lượt cắt SC, SB  tại E, F . Khi đó ta được khối đa diện không chứa đỉnh S là ABCEF

Ta có G là trọng tâm của \(\Delta SBC\) nên \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca % WGwbWaaSbaaSqaaiaadofacaGGUaGaaeyqaiaabAeacaWGfbaabeaa % aOqaaiaadAfadaWgaaWcbaGaam4uaiaac6cacaWGbbGaamOqaiaado % eaaeqaaaaakiabg2da9maalaaabaGaam4uaiaadgeaaeaacaWGtbGa % amyqaaaacaGGUaWaaSaaaeaacaWGtbGaamOraaqaaiaadofacaWGcb % aaaiaac6cadaWcaaqaaiaadofacaWGfbaabaGaam4uaiaadoeaaaGa % eyypa0ZaaSaaaeaacaaIYaaabaGaaG4maaaacaGGUaWaaSaaaeaaca % aIYaaabaGaaG4maaaacqGH9aqpdaWcaaqaaiaaisdaaeaacaaI5aaa % aiaac6caaaa!5452! \frac{{{V_{S.{\rm{AF}}E}}}}{{{V_{S.ABC}}}} = \frac{{SA}}{{SA}}.\frac{{SF}}{{SB}}.\frac{{SE}}{{SC}} = \frac{2}{3}.\frac{2}{3} = \frac{4}{9}.\)

Do đó: \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa % aaleaacaWGtbGaaiOlaiaabgeacaqGgbGaamyraaqabaGccqGH9aqp % daWcaaqaaiaaisdaaeaacaaI5aaaaiaac6cacaWGwbWaaSbaaSqaai % aadofacaGGUaGaamyqaiaadkeacaWGdbaabeaakiabgkDiElaadAfa % daWgaaWcbaGaamyqaiaadkeacaWGdbGaamyraiaadAeaaeqaaOGaey % ypa0JaamOvamaaBaaaleaadaWgaaadbaGaam4uaiaac6cacaWGbbGa % amOqaiaadoeaaeqaaaWcbeaakiabgkHiTmaalaaabaGaaGinaaqaai % aaiMdaaaGaaiOlaiaadAfadaWgaaWcbaGaam4uaiaac6cacaWGbbGa % amOqaiaadoeaaeqaaOGaeyypa0ZaaSaaaeaacaaI1aaabaGaaGyoaa % aacaGGUaGaamOvamaaBaaaleaacaWGtbGaaiOlaiaadgeacaWGcbGa % am4qaaqabaGccaGGUaaaaa!61B0! {V_{S.{\rm{AF}}E}} = \frac{4}{9}.{V_{S.ABC}} \Rightarrow {V_{ABCEF}} = {V_{_{S.ABC}}} - \frac{4}{9}.{V_{S.ABC}} = \frac{5}{9}.{V_{S.ABC}}.\)

Vì tam giác \(\Delta ABC\) vuông cân ở B, \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaado % eacqGH9aqpcaWGHbWaaOaaaeaacaaIYaaaleqaaaaa!3A44! AC = a\sqrt 2 \) nên AB = BC = a

Mặt khác \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa % aaleaacaWGtbGaaiOlaiaadgeacaWGcbGaam4qaaqabaGccqGH9aqp % daWcaaqaaiaaigdaaeaacaaIZaaaamaalaaabaGaaGymaaqaaiaaik % daaaGaamyyaiaac6cacaWGHbGaaiOlaiaadggacqGH9aqpdaWcaaqa % aiaadggadaahaaWcbeqaaiaaiodaaaaakeaacaaI2aaaaiaac6caaa % a!4770! {V_{S.ABC}} = \frac{1}{3}\frac{1}{2}a.a.a = \frac{{{a^3}}}{6}.\) Suy ra \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa % aaleaacaWGbbGaamOqaiaadoeacaWGfbGaamOraaqabaGccqGH9aqp % daWcaaqaaiaaiwdaaeaacaaI5aaaaiaac6cadaWcaaqaaiaadggada % ahaaWcbeqaaiaaiodaaaaakeaacaaI2aaaaiabg2da9maalaaabaGa % aGynaiaadggadaahaaWcbeqaaiaaiodaaaaakeaacaaI1aGaaGinaa % aaaaa!460E! {V_{ABCEF}} = \frac{5}{9}.\frac{{{a^3}}}{6} = \frac{{5{a^3}}}{{54}}\) .

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Tìm hoành độ các giao điểm của đường thẳng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2 % da9iaaikdacaWG4bGaeyOeI0YaaSaaaeaacaaIXaGaaG4maaqaaiaa % isdaaaaaaa!3CE3! y = 2x - \frac{{13}}{4}\) với đồ thị hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2 % da9maalaaabaGaamiEamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaa % igdaaeaacaWG4bGaey4kaSIaaGOmaaaaaaa!3E3A! y = \frac{{{x^2} - 1}}{{x + 2}}\) .

Xem lời giải » 2 năm trước 36
Câu 2: Trắc nghiệm

Cho hình chóp S.ABC có SA = SB = SC và tam giác ABC  vuông tại B. Vẽ \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiaadI % eacqGHLkIxdaqadaqaaiaadgeacaWGcbGaam4qaaGaayjkaiaawMca % aaaa!3D28! SH \bot \left( {ABC} \right)\)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiabgI % GiopaabmaabaGaamyqaiaadkeacaWGdbaacaGLOaGaayzkaaaaaa!3C23! H \in \left( {ABC} \right)\) . Khẳng định nào sau đây đúng?

Xem lời giải » 2 năm trước 36
Câu 3: Trắc nghiệm

Hệ số góc của tiếp tuyến của đồ thị hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiaayk % W7cqGH9aqpcaaMc8+aaSaaaeaacaWG4bWaaWbaaSqabeaacaaI0aaa % aaGcbaGaaGinaaaacaaMc8UaaGPaVlabgUcaRiaaykW7daWcaaqaai % aadIhadaahaaWcbeqaaiaaikdaaaaakeaacaaIYaaaaiaaykW7cqGH % sislcaaIXaGaaGPaVdaa!4ACA! y\, = \,\frac{{{x^4}}}{4}\,\, + \,\frac{{{x^2}}}{2}\, - 1\,\)tại điểm có hoành độ \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaWG4bWdamaaBaaaleaapeGaaGimaaWdaeqaaOGaeyypa0Zdbiab % gkHiTiaaigdaaaa!3AEC! {x_0} = - 1\) bằng :

Xem lời giải » 2 năm trước 36
Câu 4: Trắc nghiệm

Đồ thị sau đây là của hàm số nào?

Xem lời giải » 2 năm trước 35
Câu 5: Trắc nghiệm

Tìm m để phương trình sau có nghiệm \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaada % GcaaqaaiaaisdacqGHsislcaWG4baaleqaaOGaey4kaSYaaOaaaeaa % caaI0aGaey4kaSIaamiEaaWcbeaaaOGaayjkaiaawMcaamaaCaaale % qabaGaaG4maaaakiabgkHiTiaaiAdadaGcaaqaaiaaigdacaaI2aGa % eyOeI0IaamiEamaaCaaaleqabaGaaGOmaaaaaeqaaOGaey4kaSIaaG % Omaiaad2gacqGHRaWkcaaIXaGaeyypa0JaaGimaiaac6caaaa!4B96! {\left( {\sqrt {4 - x} + \sqrt {4 + x} } \right)^3} - 6\sqrt {16 - {x^2}} + 2m + 1 = 0.\)

Xem lời giải » 2 năm trước 35
Câu 6: Trắc nghiệm

Cho hình chóp \(S.ABCD\)có đáy \(ABCD\) là hình vuông cạnh \(a\) . Biết \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiaadg % eacqGHLkIxdaqadaqaaiaadgeacaWGcbGaam4qaiaadseaaiaawIca % caGLPaaaaaa!3DEA! SA \bot \left( {ABCD} \right)\) và \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiaadg % eacqGH9aqpcaWGHbWaaOaaaeaacaaIZaaaleqaaaaa!3A56! SA = a\sqrt 3 \). Thể tích của khối chóp \(S.ABCD\)là:

Xem lời giải » 2 năm trước 35
Câu 7: Trắc nghiệm

Cho tứ diện đều \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaadk % eacaWGdbGaamiraaaa!3912! ABCD\) , \(M\) là trung điểm của cạnh \(BC\) . Khi đó \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+ % gacaGGZbWaaeWaaeaacaWGbbGaamOqaiaacYcacaWGebGaamytaaGa % ayjkaiaawMcaaaaa!3E28! \cos \left( {AB,DM} \right)\) bằng: 

Xem lời giải » 2 năm trước 35
Câu 8: Trắc nghiệm

Đồ thị sau đây là của hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2 % da9iaadIhadaahaaWcbeqaaiaaisdaaaGccqGHsislcaaIZaGaamiE % amaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaiodaaaa!3F2D! y = {x^4} - 3{x^2} - 3\). Với giá trị nào của m thì phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa % aaleqabaGaaGinaaaakiabgkHiTiaaiodacaWG4bWaaWbaaSqabeaa % caaIYaaaaOGaey4kaSIaamyBaiabg2da9iaaicdaaaa!3F13! {x^4} - 3{x^2} + m = 0\) có ba nghiệm phân biệt?

Xem lời giải » 2 năm trước 34
Câu 9: Trắc nghiệm

Trong khai triển \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca % WG4bGaey4kaSYaaSaaaeaacaaIYaaabaWaaOqaaeaacaWG4baaleaa % aaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaI2aaaaaaa!3C37! {\left( {x + \frac{2}{{\sqrt[{}]{x}}}} \right)^6}\), hệ số của \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa % aaleqabaGaaG4maaaakiaacYcaaaa!3895! {x^3},\) \((x>0)\) là:

Xem lời giải » 2 năm trước 34
Câu 10: Trắc nghiệm

Tìm m  để phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiGaco % hacaGGPbGaaiOBamaaCaaaleqabaGaaGOmaaaakiaadIhacqGHRaWk % caWGTbGaaiOlaiGacohacaGGPbGaaiOBaiaaikdacaWG4bGaeyypa0 % JaaGOmaiaad2gaaaa!4542! 2{\sin ^2}x + m.\sin 2x = 2m\) vô nghiệm.

Xem lời giải » 2 năm trước 33
Câu 11: Trắc nghiệm

Cho tứ diện ABCD có AB = AC  và DB = DC. Khẳng định nào sau đây đúng?

Xem lời giải » 2 năm trước 33
Câu 12: Trắc nghiệm

Nghiệm của phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaDa % aaleaacaWGUbaabaGaaG4maaaakiabg2da9iaaikdacaaIWaGaamOB % aaaa!3C0F! A_n^3 = 20n\) là:

Xem lời giải » 2 năm trước 33
Câu 13: Trắc nghiệm

Có bao nhiêu số tự nhiên có sáu chữ số khác nhau từng đôi một, trong đó chữ số 5 đứng liền giữa hai chữ số 1 và 4 ?

Xem lời giải » 2 năm trước 32
Câu 14: Trắc nghiệm

Đồ thị hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2 % da9maalaaabaGaamiEamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaa % dIhacqGHRaWkcaaIXaaabaGaeyOeI0IaaGPaVlaaiwdacaWG4bWaaW % baaSqabeaacaaIYaaaaOGaeyOeI0IaaGOmaiaadIhacqGHRaWkcaaI % Zaaaaaaa!46E0 y = \frac{{{x^2} + x + 1}}{{ - \,5{x^2} - 2x + 3}}\) có bao nhiêu đường tiệm cận?

Xem lời giải » 2 năm trước 32
Câu 15: Trắc nghiệm

Cho một cấp số cộng \(\ \left( {{u_n}} \right)\) có \({u_1} = \frac{1}{3} ; u_8 = 26\) ,  Tìm công sai \( d\)

Xem lời giải » 2 năm trước 31

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »