Cho hình chóp S.ABC có đáy là tam giác đều cạnh 4a, SA vuông góc với mặt phẳng đáy, góc giữa mặt phẳng (SBC) và mặt phẳng đáy bằng \(60{}^\circ .\) Diện tích của mặt cầu ngoại tiếp hình chóp S.ABC bằng
A. \(84\pi {{a}^{2}}.\)
B. \(\frac{172\pi {{a}^{2}}.}{9}\)
C. \(\frac{172\pi {{a}^{2}}.}{3}\)
D. \(\frac{76\pi {{a}^{2}}.}{3}\)
Lời giải của giáo viên
Ta có tâm của đáy cũng là giao điểm ba đường cao (ba đường trung tuyến) của tam giác đều ABC nên bán kính đường tròn ngoại tiếp đáy là \(r = 4a.\frac{{\sqrt 3 }}{3} = \frac{{4\sqrt 3 a}}{3}\)
Đường cao AH của tam giác đều ABC là \(AH = \frac{{4a.\sqrt 3 }}{2} = 2\sqrt 3 a\).
Góc giữa mặt phẳng (SBC) và mặt phẳng đáy bằng 60oC suy ra \(\widehat {SHA} = 60^\circ \).
Suy ra \(\tan SHA = \frac{{SA}}{{AH}} = \frac{{SA}}{{2\sqrt 3 a}} = \sqrt 3 \Rightarrow SA = 6a\).
Bán kính mặt cầu ngoại tiếp \({R_{mc}} = \sqrt {{{\left( {\frac{{SA}}{2}} \right)}^2} + {r^2}} = \sqrt {9{a^2} + \frac{{16}}{3}{a^2}} = \frac{{\sqrt {129} }}{3}a\).
Diện tích mặt cầu ngoại tiếp của hình chóp S.ABC là \({S_{mc}} = 4\pi {R^2} = 4\pi {\left( {\frac{{\sqrt {129} }}{3}a} \right)^2} = \frac{{172\pi {a^2}}}{3}\).
CÂU HỎI CÙNG CHỦ ĐỀ
Với a, b là các số thực dương tùy ý và \(a\ne 1,\,\,{{\log }_{{{a}^{5}}}}b\) bằng
Trong không gian Oxyz, hình chiếu vuông góc của điểm A(3;2;1) trên trục Ox có tọa độ là
Trong không gian Oxyz, cho ba điểm A(3;0;0), B(0;1;0) và C(0;0;-2). Mặt phẳng (ABC) có phương trình là
Cho hai số phức \({{z}_{1}}=3-2i\) và \({{z}_{2}}=2+i.\) Số phức \({{z}_{1}}+{{z}_{2}}\) bằng
Cho hàm số f(x) có bảng biến thiên sau:
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Trong không gian Oxyz, cho mặt cầu \(\left( S \right):\,\,\,{{x}^{2}}+{{y}^{2}}+{{\left( z+2 \right)}^{2}}=9.\) Bán kính của (S) bằng
Xét các số thực không âm x và y thỏa mãn \(2x+y{{.4}^{x+y-1}}\ge 3.\) Giá trị nhỏ nhất của biểu thức \(P={{x}^{2}}+{{y}^{2}}+4x+6y\) bằng
Có bao nhiêu cách xếp 6 học sinh thành một hàng dọc?
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
Cho hình lăng trụ đứng ABC.A’B’C’ có tất cả các cạnh bằng a. Gọi M là trung điểm của CC’ (tham khảo hình bên). Khoảng cách từ M đến mặt phẳng (A’BC) bằng
Trên mặt phẳng tọa độ, biết M(-3;1) là điểm biểu diễn số phức z. Phần thực của z bằng
Giá trị nhỏ nhất của hàm số \(f(x)={{x}^{3}}-24x\) trên đoạn [2;19] bằng
Tập hợp tất cả các giá trị thực của m để hàm số \(y=\frac{x+4}{x+m}\) đồng biến trên khoảng \(\left( -\infty ;-7 \right)\) là
Cho cấp số nhân \(\left( {{u}_{n}} \right)\) với \({{u}_{1}}=3\) và công bội \(q=2.\) Giá trị của \({{u}_{2}}\) bằng