Câu hỏi Đáp án 2 năm trước 39

Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A, D, cạnh bên SA vuông góc với mặt đáy. Biết \(AB = 2AD = 2DC = 2a\), góc giữa hai mặt phẳng (SAB) và (SBC) là \(60^0\). Độ dài cạnh SA là:

A. \(a\sqrt 2 \)

Đáp án chính xác ✅

B. \(2a\sqrt 3 \)

C. \(3a\sqrt 2 \)

D. \(a\sqrt 3 \)

Lời giải của giáo viên

verified HocOn247.com

Cách giải:

Gọi E là trung điểm của AB. Ta dễ dàng chứng minh được ABCE là hình vuông

\( \Rightarrow \left\{ \begin{array}{l}
CE \bot AB\\
CE \bot SA
\end{array} \right. \Rightarrow CE \bot (SAB) \Rightarrow CE \bot SB\)

Trong (SAB) kẻ \(HE\bot SB\) ta có:

\(\begin{array}{l}
\left\{ \begin{array}{l}
SB \bot EH\\
SB \bot CE
\end{array} \right. \Rightarrow SB \bot (CHE) \Rightarrow SB \bot CH\\
\left\{ \begin{array}{l}
(SAB) \cap (SBC) = SB\\
(SAB) \supset EH \bot SB\\
(SAC) \supset CH \bot SB
\end{array} \right. \Rightarrow \angle \left( {\left( {SAB} \right);\left( {SBC} \right)} \right) = \angle \left( {EH;CH} \right) = \angle CHE = 60^\circ 
\end{array}\)

Xét tam giác vuông CEH có \(EH = CE.cot60^\circ  = \frac{a}{{\sqrt 3 }}\)

Ta có \(\Delta SAB \sim \Delta EHG(g.g) \Rightarrow \frac{{SA}}{{EH}} = \frac{{SB}}{{BE}} \Rightarrow SA = \frac{{EH.SB}}{{BE}} = \frac{{\frac{a}{{\sqrt 3 }}.\sqrt {S{A^2} + 4{a^2}} }}{a}\)

\( \Leftrightarrow \sqrt 3 SA = \sqrt {S{A^2} + 4{a^2}}  \Leftrightarrow 3S{A^2} = S{A^2} + 4{a^2} \Leftrightarrow S{A^2} = 2{a^2} \Leftrightarrow SA = a\sqrt 2 \)

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho một tập hợp A gồm 9 phân tử. Có bao nhiêu cặp tập con khác rỗng không giao nhau của tập A?

Xem lời giải » 2 năm trước 46
Câu 2: Trắc nghiệm

Trong không gian với hệ trục tọa độ Oxyz cho \(\overrightarrow a  = (1; - 2;3)\) và \(\overrightarrow b  = (2; - 1; - 1)\). Khẳng định nào sau đây đúng?

Xem lời giải » 2 năm trước 45
Câu 3: Trắc nghiệm

Cho x là số thực dương, khai triển nhị thức \({\left( {{x^2} + \frac{1}{x}} \right)^{12}}\) ta có hệ số của số hạng chứa  bằng 792. Giá trị của m là:

Xem lời giải » 2 năm trước 44
Câu 4: Trắc nghiệm

Cho tứ diện ABCD có \((ACD) \bot (BCD),AC = AD = BC = BD = a,CD = 2x\). Giá trị của x để hai mặt phẳng (ABC) và (ABD) vuông góc với nhau là:

Xem lời giải » 2 năm trước 43
Câu 5: Trắc nghiệm

Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn \(\left[ { - 2018;2018} \right]\) để phương trình \({\left( {x + 2 - \sqrt {{x^2} + 1} } \right)^2} + \frac{{18\left( {{x^2} + 1} \right)\sqrt {{x^2} + 1} }}{{x + 2 + \sqrt {{x^2} + 1} }} = m\left( {{x^2} + 1} \right)\) có nghiệm thực?

Xem lời giải » 2 năm trước 42
Câu 6: Trắc nghiệm

Cho hàm số \(y=f(x)\) có đạo hàm \(y' = {x^2}(x - 2)\). Mệnh đề nào sau đây đúng?

Xem lời giải » 2 năm trước 41
Câu 7: Trắc nghiệm

Tìm tập nghiệm S của phương trình \({2^{x + 1}} = 4\)

Xem lời giải » 2 năm trước 41
Câu 8: Trắc nghiệm

Cho hàm số \(y=f(x)\) có \(f'(x) > 0,\forall x \in R\). Tìm tập hợp tất cả các giá trị thực của x để \(f\left( {\frac{1}{x}} \right) < f\left( 1 \right)\)

Xem lời giải » 2 năm trước 41
Câu 9: Trắc nghiệm

Xác định các hệ số a, b, c để đồ thị hàm số có đồ thị hàm số như hình vẽ bên:

Xem lời giải » 2 năm trước 40
Câu 10: Trắc nghiệm

Cho hình chóp S.ABCD có \(SC = x(0 < x < a\sqrt 3 )\), các cạnh còn lại đều bằng a. Biết rằng thể tích khối chóp S.ABCD lớn nhất khi và chỉ khi \(x = \frac{{a\sqrt m }}{n}(m,n \in N*)\). Mệnh đề nào sau đây đúng?

Xem lời giải » 2 năm trước 40
Câu 11: Trắc nghiệm

Cho hai góc nhọn a và b thỏa mãn \(\tan a = \frac{1}{7}\) và \(\tan b = \frac{3}{4}\). Tính a + b.

Xem lời giải » 2 năm trước 39
Câu 12: Trắc nghiệm

Tìm tất cả các giá trị của tham số m để phương trình \({\left( {7 - 3\sqrt 5 } \right)^{{x^2}}} + m{\left( {7 + 3\sqrt 5 } \right)^{{x^2}}} = {2^{{x^2} - 1}}\) có đúng bốn nghiệm phân biệt.

Xem lời giải » 2 năm trước 39
Câu 13: Trắc nghiệm

Cho hình chóp SABCD, có đáy ABCD là hình vuông tâm O, cạnh bên vuông góc với mặt đáy. Gọi M là trung điểm của SA, N là hình chiếu vuông góc của A lên SO. Mệnh đề nào sau đây đúng?

Xem lời giải » 2 năm trước 39
Câu 14: Trắc nghiệm

Trong không gian với hệ tọa độ Oxyz, cho \(A\left( { - 3;0;0} \right);B\left( {0;0;3} \right);C\left( {0; - 3;0} \right)\) và mặt phẳng (P): \(x + y + z - 3 = 0\). Tìm trên (P) điểm M sao cho \(\left| {\overrightarrow {MA}  + \overrightarrow {MB}  - \overrightarrow {MC} } \right|\) nhỏ nhất.

Xem lời giải » 2 năm trước 39
Câu 15: Trắc nghiệm

Giá trị lớn nhất của hàm số \(y = {x^2} + \frac{{16}}{x}\) trên đoạn \(\left[ {\frac{3}{2};4} \right]\) bằng:

Xem lời giải » 2 năm trước 38

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »