Câu hỏi Đáp án 2 năm trước 31

Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A, D và \(AB = AD = a,\,\,DC = 2a\), tam giác SAD đều và nằm trong mặt phẳng vuông góc với đáy. Gọi H là hình chiếu vuông góc vủa D trên AC và M là trung điểm H Tính diện tích mặt cầu ngoại tiếp chóp S.BDM theo a 

A. \(\dfrac{{7\pi {a^2}}}{9}\) 

B. \(\dfrac{{13\pi {a^2}}}{9}\) 

C. \(\dfrac{{13\pi {a^2}}}{3}\) 

D. \(\dfrac{{7\pi {a^2}}}{3}\) 

Đáp án chính xác ✅

Lời giải của giáo viên

verified HocOn247.com

Xét tam giác vuông ADC có \(DH = \dfrac{{AD.CD}}{{\sqrt {A{D^2} + C{D^2}} }} = \dfrac{{a.2a}}{{\sqrt {{a^2} + 4{a^2}} }} = \dfrac{{2a}}{{\sqrt 5 }}\)

\(HC = \dfrac{{C{D^2}}}{{AC}} = \dfrac{{C{D^2}}}{{\sqrt {A{D^2} + C{D^2}} }} = \dfrac{{4{a^2}}}{{\sqrt {{a^2} + 4{a^2}} }} = \dfrac{{4a}}{{\sqrt 5 }} \Rightarrow HM = \dfrac{1}{2}HC = \dfrac{{2a}}{{\sqrt 5 }} = DH\)\( \Rightarrow \Delta DMH\) vuông cân tại H.

\( \Rightarrow \widehat {AMD} = {45^0} = \widehat {ABD} \Rightarrow \) Tứ giác ADMB là tứ giác nội tiếp \( \Rightarrow \) Mặt cầu ngoại tiếp chóp S.BDM cũng chính là mặt cầu ngoại tiếp chóp S.ABMD.

Dễ thấy tứ giác ABMD nội tiếp đường tròn đường kính BD, gọi O là trung điểm của BD, qua O kẻ đường thẳng \(d \bot \left( {ABCD} \right)\).

Gọi G là trọng tâm tam giác đều SAD, qua G kẻ \(GI//OK\,\,\left( {I \in d} \right)\) (K là trung điểm của AD).

Ta có \(OK//AB \Rightarrow OK \bot AD \Rightarrow OK \bot \left( {SAD} \right) \Rightarrow GI \bot \left( {SAD} \right)\).

Ta có: \(I \in d \Rightarrow IA = IB = IM = ID\)

          \(I \in IG \Rightarrow IS = IA = ID\)

\( \Rightarrow IA = IB = IM = ID = IS \Rightarrow \) I là tâm mặt cầu ngoại tiếp chóp S.ABMD.

Ta có \(OK = \dfrac{1}{2}AB = \dfrac{a}{2} = AK \Rightarrow OA = \sqrt {O{K^2} + A{K^2}}  = \sqrt {\dfrac{{{a^2}}}{4} + \dfrac{{{a^2}}}{4}}  = \dfrac{{a\sqrt 2 }}{2}\).

Tam giác SAD đều cạnh a \( \Rightarrow SK = \dfrac{{a\sqrt 3 }}{2} \Rightarrow GK = \dfrac{1}{3}SK = \dfrac{{a\sqrt 3 }}{6} = OI\).

Xét tam giác vuông IOA có: \(IA = \sqrt {I{O^2} + O{A^2}}  = \sqrt {{{\left( {\dfrac{{a\sqrt 3 }}{6}} \right)}^2} + {{\left( {\dfrac{{a\sqrt 2 }}{2}} \right)}^2}}  = \dfrac{{a\sqrt {21} }}{6} = R\).

Vậy diện tích mặt cầu ngoại tiếp chóp S.BDM là \(S = 4\pi {R^2} = 4\pi .\dfrac{{7{a^2}}}{{12}} = \dfrac{{7\pi {a^2}}}{3}\).

Chọn D.

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = \left( {{e^x} + 1} \right)\left( {{e^x} - 12} \right)\left( {x + 1} \right){\left( {x - 1} \right)^2}\)  trên \(R.\) Hỏi hàm số \(y = f\left( x \right)\) có bao nhiêu điểm cực trị? 

Xem lời giải » 2 năm trước 48
Câu 2: Trắc nghiệm

Cho hàm số \(y = {x^3} - 3\left( {m + 3} \right){x^2} + 3\) có đồ thị là \(\left( C \right)\). Tìm tất cả các giá trị của m sao cho qua điểm \(A\left( { - 1; - 1} \right)\) kẻ được đúng 2 tiếp tuyến đến \(\left( C \right)\), một tiếp tuyến là \({\Delta _1}:\,\,y =  - 1\) và tiếp tuyến thứ hai là \({\Delta _2}\) thỏa mãn: \({\Delta _2}\) tiếp xúc với \(\left( C \right)\) tại N đồng thời cắt \(\left( C \right)\) tại P (khác N) có hoành độ bằng 3.

Xem lời giải » 2 năm trước 46
Câu 3: Trắc nghiệm

Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên R và có đồ thị hàm số \(y = f'\left( x \right)\) như hình bên. Hàm số \(y = f\left( {3 - x} \right)\) đồng biến trên khoảng nào dưới đây?

Xem lời giải » 2 năm trước 43
Câu 4: Trắc nghiệm

Cho hình lăng trụ đứng \(ABCD.A'B'C'D'\) có đáy là hình thoi, biết \({\rm{AA}}' = 4a;\,AC = 2a,BD = a.\) Thể tích \(V\) của khối lăng trụ là  

Xem lời giải » 2 năm trước 41
Câu 5: Trắc nghiệm

Phương trình \({\sin ^2}x + \sqrt 3 \sin x\cos x = 1\) có bao nhiêu nghiệm thuộc \(\left[ {0;3\pi } \right]\). 

Xem lời giải » 2 năm trước 41
Câu 6: Trắc nghiệm

Cho hình vuông \(ABCD\) cạnh bằng \(1\), điểm \(M\) là trung điểm \(CD\). Cho hình vuông \(ABCD\) (tất cả các điểm trong của nó) quay quanh trục là đường thẳng \(AM\) ta được một khối tròn xoay. Tính thể tích của khối tròn xoay đó. 

Xem lời giải » 2 năm trước 40
Câu 7: Trắc nghiệm

Tìm tập nghiệm \(S\) của phương trình \({9^{{x^2} - 3x + 2}} = 1.\) 

Xem lời giải » 2 năm trước 40
Câu 8: Trắc nghiệm

Cho khối chóp \(SABC\) có \(SA \bot \left( {ABC} \right),\;\;SA = a,\;AB = a,\;AC = 2a,\;\angle BAC = {120^0}.\) Tính thể tích khối chóp \(SABC.\) 

Xem lời giải » 2 năm trước 40
Câu 9: Trắc nghiệm

Tìm số hạng không chứ x trong khai triển của \({\left( {{x^2} - \dfrac{1}{x}} \right)^{12}}.\)
Xem lời giải » 2 năm trước 40
Câu 10: Trắc nghiệm

Cho tam giác ABC vuông cân tại A, đường cao \(AH = 4\). Tính diện tích xung quanh Sxq của hình nón nhận được khi quay tam giác ABC quanh trục AH. 

Xem lời giải » 2 năm trước 39
Câu 11: Trắc nghiệm

Tìm tập xác định D  của hàm số \(y = \log { _3}\left( {{x^2} - x - 2} \right).\) 

Xem lời giải » 2 năm trước 39
Câu 12: Trắc nghiệm

Trong không gian với hệ tọa độ Oxyz cho tam giác ABC với \(A\left( {1;2;1} \right);\,\,B\left( { - 3;0;3} \right)\,\,C\left( {2;4; - 1} \right)\). Tìm tọa đô điểm D sao cho tứ giác ABCD là hình bình hành ? 

Xem lời giải » 2 năm trước 38
Câu 13: Trắc nghiệm

Cho khối chóp \(SABC\) có \(SA,\;SB,\;SC\) đôi một vuông góc và \(SA = a,\;SB = b,\;SC = c.\) Tính thể tích \(V\) của khối chóp đó theo \(a,\;b,\;c.\) 

Xem lời giải » 2 năm trước 38
Câu 14: Trắc nghiệm

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(R\) và có bảng biến thiên:

Khẳng định nào sai?

Xem lời giải » 2 năm trước 38
Câu 15: Trắc nghiệm

Tìm tất cả các giá trị thực của tham số \(m\) để hàm số \(y = {x^3} - 3{x^2} + mx + 2\) đồng biến trên \(R.\)  

Xem lời giải » 2 năm trước 38

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »