Câu hỏi Đáp án 2 năm trước 31

Cho hình chóp S.ABCD có đáy là hình bình hành và có thể tích là V. Gọi P là điểm trên cạnh SC sao cho \(SC = 5SP.\) Một mặt phẳng \((\alpha )\) qua AP cắt hai cạnh SB và SD lần lượt tại M và N. Gọi \(V_1\) là thể tích của khối chóp S.AMPN. Tìm giá trị lớn nhất của \(\frac{{{V_1}}}{V}\).

A. \(\frac{1}{{15}}.\)

B. \(\frac{1}{{25}}.\)

C. \(\frac{3}{{25}}.\)

Đáp án chính xác ✅

D. \(\frac{2}{{15}}.\)

Lời giải của giáo viên

verified HocOn247.com

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho phương trình \({(4 + \sqrt {15} )^x} + (2m + 1){(4 - \sqrt {15} )^x} - 6 = 0.\) Để phương trình có hai nghiệm phân biệt \(x_1, x_2\) thỏa mãn \({x_1} - 2{\rm{ }}{x_2} = 0.\) Ta có m thuộc khoảng nào?

Xem lời giải » 2 năm trước 49
Câu 2: Trắc nghiệm

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) có phương trình 2x + 3y – 4z +7 = 0. Tìm tọa độ véc tơ pháp tuyến của (P).

Xem lời giải » 2 năm trước 36
Câu 3: Trắc nghiệm

Hình vẽ bên thể hiện đồ thị của ba trong bốn hàm số \(y = {6^x},y = {8^x},y = \frac{1}{{{5^x}}}\) và \(y = \frac{1}{{{{\sqrt 7 }^x}}}.\)

Hỏi (C2) là đồ thị hàm số nào?

Xem lời giải » 2 năm trước 35
Câu 4: Trắc nghiệm

Cho hàm số \(y = f\left( x \right)\) liên tục trên R. Hàm số \(y = f'\left( x \right)\) có đồ thị như hình vẽ. Hàm số \(g\left( x \right) = f\left( {x - 1} \right) + \frac{{2019 - 2018x}}{{2018}}\) đồng biến trên khoảng nào dưới đây?

Xem lời giải » 2 năm trước 35
Câu 5: Trắc nghiệm

Gọi A là tập các số tự nhiên gồm 5 chữ số mà các chữ số đều khác 0. Lấy ngẫu nhiên từ tập A một số. Tính xác suất để lấy được số mà chỉ có đúng 3 chữ số khác nhau.

Xem lời giải » 2 năm trước 35
Câu 6: Trắc nghiệm

Nếu \(F'\,(x) = \frac{1}{{2x - 1}}\) và \(F(1) = 1\) thì giá trị của \(F(4)\) bằng

Xem lời giải » 2 năm trước 34
Câu 7: Trắc nghiệm

Phương trình tiếp tuyến của đồ thị hàm số \(y = \frac{{ - x + 3}}{{x - 1}}\) tại điểm có hoành độ \(x= 0\) là

Xem lời giải » 2 năm trước 34
Câu 8: Trắc nghiệm

Cho hình chóp \(S.ABCD\) có \(AB = 5\sqrt 3 \) , \(BC =3\sqrt 3 \), góc \(\widehat {BAD} = \widehat {BCD} = {90^0}\), SA = 9 và SA vuông góc với đáy. Biết thể tích khối chóp S.ABCD bằng  \(66\sqrt 3 \), tính cotang của góc giữa mặt phẳng (SBD) và mặt đáy.

Xem lời giải » 2 năm trước 34
Câu 9: Trắc nghiệm

Cho hình chóp S,ABC có đáy ABC là tam giác đều cạnh \(2a\sqrt 3 \), mặt bên SAB là tam giác cân với \(\widehat {ASB} = {120^o}\) và nằm trong mặt phẳng vuông góc với đáy. Gọi M là trung điểm của SCN là trung điểm của MC Tính khoảng cách  giữa hai đường thẳng AM, BN

Xem lời giải » 2 năm trước 34
Câu 10: Trắc nghiệm

Thể tích vật tròn xoay khi quay hình phẳng (H) xác định bởi các đường \(y = \frac{1}{3}{x^3} - {x^2},y = 0,x = 0\), \(x = 3\) quanh trục Ox là

Xem lời giải » 2 năm trước 34
Câu 11: Trắc nghiệm

Đồ thị sau đây là đồ thị của hàm số nào?

Xem lời giải » 2 năm trước 34
Câu 12: Trắc nghiệm

Cho \(a, b, c\) là các số thực dương và thỏa mãn \(a.b.c = 1\). Biết rằng biểu thức \(P = \frac{{2b + 3a}}{{\sqrt {{b^2} - ab + 5{a^2}} }} + \frac{{2c + 3b}}{{\sqrt {{c^2} - bc + 5{b^2}} }}\) đạt giá trị lớn nhất tại \({a_0},\,{b_0},\,{c_0}\). Tính \({a_0} + {b_0} + {c_0}.\)

Xem lời giải » 2 năm trước 34
Câu 13: Trắc nghiệm

Tập nghiệm của phương trình \({5^{{x^2} - 4x + 3}} + {5^{{x^2} + 7x + 6}} = {5^{2{x^2} + 3x + 9}} + 1\) là

Xem lời giải » 2 năm trước 33
Câu 14: Trắc nghiệm

Tính \(\mathop {\lim }\limits_{x \to  - 2} \frac{{{x^2} - 2{\rm{x}} - 8}}{{\sqrt {2{\rm{x}} + 5}  - 1}}.\)

Xem lời giải » 2 năm trước 33
Câu 15: Trắc nghiệm

Cho tam giác ABC có \(A\left( {1;{\rm{ }} - 1} \right),{\rm{ }}B\left( {2;{\rm{ }}5} \right),{\rm{ }}C\left( {4;{\rm{ }} - 3} \right)\). Lập phương trình đường thẳng chứa đường trung tuyến đỉnh A của tam giác ABC.

Xem lời giải » 2 năm trước 33

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »