Lời giải của giáo viên
Ta có \(SA \bot (ABCD)\) nên góc giữa đường thẳng SC và mặt phẳng (ABCD) bằng \(\angle SCA\)
Xét tam giác vuông SAC, \(\tan \angle SCA = \frac{{SA}}{{AC}} = \frac{{2\sqrt 3 a}}{{\sqrt 2 a.\sqrt 2 }} = \sqrt 3 \)
Vậy \(\angle SCA = {60^0}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y = f\left( x \right) = m{x^4} + n{x^3} + p{x^2} + qx + r\), trong đó (m,n,p,q,r \in R\). Biết hàm số y = f'(x) có đồ thị như hình bên dưới.
Số nghiệm của phương trình f(x) = 16m + 8n + 4p + 2q + r là
Một hình nón có độ dài đường sinh bằng đường kính đáy. Diện tích hình tròn đáy của hình nón bằng \(9 \pi\). Tính đường cao h của hình nón.
Tính thể tích khối hộp chữ nhật có ba kích thước \(a = 4,{\rm{ }}b = 5,{\rm{ }}c = 6\)
Để đồ thị hàm số \(y = - {x^4} - \left( {m - 3} \right){x^2} + m + 1\) có điểm cực đại mà không có điểm cực tiểu thì tất cả các giá trị thực của tham số m là
Bất phương trình \({\log _2}(3x - 2) > {\log _2}(6 - 5x)\) có tập nghiệm là (a;b). Tổng a + b bằng
Tập xác định của hàm số \(y = {\log _2}\left( {x - 2} \right)\) là
Diện tích hình phẳng giới hạn bởi hai đồ thị \(f\left( x \right) = {x^3} - 3x + 2;g\left( x \right) = x + 2\) là:
Giá trị nhỏ nhất của hàm số \(y = {x^3} - 3{x^2} - 9x + 35\) trên đoạn [-4;4] bằng:
Trong không gian Oxyz, cho mặt phẳng (P):x + 3y - 5 = 0. Vectơ nào dưới đây là một vectơ pháp tuyến của mặt phẳng (P)?
Trong không gian Oxyz, cho mặt cầu \((S):{(x + 2)^2} + {(y - 1)^2} + {(z + 5)^2} = 25\). Tìm tọa độ tâm của mặt cầu (S).
Cho hàm số y = f(x) có bảng xét dấu đạo hàm như sau
Hàm số đã cho có bao nhiêu điểm cực trị?
Cho x, y thỏa mãn \({\log _3}\frac{{x + y}}{{{x^2} + {y^2} + xy + 2}} = x\left( {x - 9} \right) + y\left( {y - 9} \right) + xy\). Tìm giá trị lớn nhất của \(P = \frac{{3x + 2y - 9}}{{x + y + 10}}\) khi x, y thay đổi.
Trong không gian Oxyz, hình chiếu của điểm M(2;-2;1) trên mặt phẳng (Oyz) có tọa độ là