Lời giải của giáo viên
Gọi O là tâm hình vuông ABCD và E là trung điểm SB.
Vì S.ABCD là hình chóp đều nên \(SO \bot \left( {ABCD} \right)\).
Trong (SBO) kẻ đường trung trực của SB cắt SO tại I, khi đó \(IA = IB = IC = ID = IS\) nên I là tâm mặt cầu ngoại tiếp hình chóp S.ABCD và bán kính mặt cầu là R = IS.
Ta có ABCD là hình vuông cạnh 2
\( \Rightarrow BD = \sqrt {B{C^2} + C{D^2}} = 2\sqrt 2 \Rightarrow BO = \frac{{BD}}{2} = \sqrt 2 \).
Ta có \(SA = SB = SC = SD = 3\sqrt 2 \) (vì S.ABCD là hình chóp đều) nên \(SE = EB = \frac{{3\sqrt 2 }}{2}\)
Xét tam giác SBO vuông tại O (vì \(SO \bot \left( {ABCD} \right) \Rightarrow SO \bot OB\)) có \(SO = \sqrt {S{B^2} - O{B^2}} = \sqrt {18 - 2} = 4\).
Ta có \(\Delta SEI\) đồng dạng với tam giác SOB (g-g) \( \Rightarrow \frac{{SI}}{{SB}} = \frac{{SE}}{{SO}} \Leftrightarrow IS = \frac{{SB.SE}}{{SO}} = \frac{{3\sqrt 2 .\frac{{3\sqrt 2 }}{2}}}{4} = \frac{9}{4}\).
Vậy bán kính \(R = \frac{9}{4}\).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình H là đa giác đều có 24 đỉnh. Chọn ngẫu nhiên 4 đỉnh của H. Tính xác suất sao cho 4 đỉnh được chọn tạo thành một hình chữ nhật nhưng không phải hình vuông.
Cho a là số thực dương bất kì khác 1. Tính \(S = {\log _a}\left( {{a^3}\sqrt[4]{a}} \right)\).
Trong không gian Oxyz, cho hai mặt phẳng \(\left( P \right):x + 2y - 2z - 6 = 0\) và \(\left( Q \right):x + 2y - 2z + 3 = 0\). Khoảng cách giữa hai mặt phẳng (P) và (Q) bằng
Trong không gian Oxyz, phương trình của mặt phẳng (P) đi qua điểm B(2;1;-3), đồng thời vuông góc với hai mặt phẳng \(\left( Q \right):x + y + 3z = 0,\left( R \right):2x - y + z = 0\) là:
Đồ thị hàm số \(y = \frac{{x + 1}}{{4x - 1}}\) có đường tiệm cận ngang là đường thẳng nào sau đây?
Xét hai số thực a, b dương khác 1. Mệnh đề nào sau đây đúng?
Đường cong trong hình vẽ sau đây là đồ thị của hàm số nào?
Trong không gian Oxyz, cho điểm \(A\left( { - 4;0;1} \right)\) và mặt phẳng \(\left( P \right):x - 2y - z + 4 = 0\). Mặt phẳng (Q) đi qua điểm A và song song với mặt phẳng (P) có phương trình là
Trong không gian với hệ tọa độ Oxyz, cho \(\overrightarrow a = \overrightarrow i + 3\overrightarrow j - 2\overrightarrow k \). Tọa độ của vectơ \(\overrightarrow a \) là
Trong không gian Oxyz, cho mặt cầu \(\left( S \right):{\left( {x - 3} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 1} \right)^2} = 4\) và hai điểm A(-1;2;-3); B(5;2;3). Gọi M là điểm thay đổi trên mặt cầu (S). Tính giá trị lớn nhất của biểu thức \(2M{A^2} + M{B^2}\).
Biết bất phương trình \({\log _5}\left( {{5^x} - 1} \right).{\log _{25}}\left( {{5^{x + 1}} - 5} \right) \le 1\) có tập nghiệm là đoạn [a;b]. Giá trị của \(a+b\) bằng
Tìm nghiệm của phương trình \({\log _2}\left( {x - 5} \right) = 4\).
Từ các chữ số 1; 5; 6; 7 có thể lập được bao nhiêu số tự nhiên có 4 chữ số đôi một khác nhau?
Cho đồ thị \(y=f(x)\) như hình vẽ sau đây. Biết rằng \(\int\limits_{ - 2}^1 {f\left( x \right)dx} = a\) và \(\int\limits_1^2 {f\left( x \right)dx} = b\). Tính diện tích S của phần hình phẳng được tô đậm.
Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):2x - y + z + 4 = 0\). Khi đó mặt phẳng (P) có một vectơ pháp tuyến là