Cho hình chóp tam giác \(S.ABC\) có đáy là tam giác \(ABC\) đều cạnh có độ dài là \(a,SA\) vuông góc với mặt phẳng đáy, cạnh bên \(SC\) tạo với mặt đáy một góc \({{30}^{0}}.\) Thể tích khối chóp
A. \(\frac{{{a}^{3}}}{4}.\)
B. \(\frac{{{a}^{3}}}{12}.\)
C. \(\frac{{{a}^{3}}\sqrt{3}}{3}.\)
D. \(\frac{{{a}^{3}}\sqrt{3}}{6}.\)
Lời giải của giáo viên
Do \(SA\bot \left( ABC \right)\) nên góc giữa \(SC\) với mặt phẳng đáy là góc \(\left( SC,AC \right)=\widehat{SCA}={{30}^{0}}.\)
Trong tam giác vuông \(SAC:SA=AC.\tan {{30}^{0}}=\frac{a\sqrt{3}}{3}.\)
Diện tích tam giác \(ABC\) là \({{S}_{\Delta ABC}}=\frac{{{a}^{2}}\sqrt{3}}{4}.\)
Vậy thể tích hình chóp là \({{V}_{S.ABC}}=\frac{1}{3}SA.{{S}_{\Delta ABC}}=\frac{1}{3}\frac{a\sqrt{3}}{4}\frac{{{a}^{2}}\sqrt{3}}{4}=\frac{{{a}^{3}}}{12}.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\mathbb{R}\) có đồ thị như hình vẽ.
Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \(f\left( \sqrt{4+2f\left( \cos x \right)} \right)=m\) có nghiệm \(x\in \left[ 0;\frac{\pi }{2} \right).\)
Cho hàm số \(y={{x}^{3}}-3{{x}^{2}}+mx-1\) với \(m\) là tham số thực. Tìm tất cả các giá trị của tham số \(m\) để hàm số đạt cực trị tại hai điểm \({{x}_{1}};{{x}_{2}}\) thỏa mãn \(x_{1}^{2}+x_{2}^{2}=6.\)
Phương trình \(\log _{2}^{2}x={{\log }_{2}}\frac{{{x}^{4}}}{2}\) có nghiệm là \(a,b.\) Khi đó \(a.b\) bằng
Có bao nhiêu giá trị nguyên dương của \(m\) để hàm số \(y=\frac{x-8}{x-m}\) đồng biến trên từng khoảng xác định của nó?
Tổng các nghiệm của phương trình \(\log _{2}^{2}\left( 3x \right)+{{\log }_{3}}\left( 9x \right)-7=0\) bằng
Tìm hoành độ các giao điểm của đường thẳng \(y=2x-\frac{13}{4}\) với đồ thị hàm số \(y=\frac{{{x}^{2}}-1}{x+2}.\)
Cho hàm số \(y=\frac{x-\sqrt{{{x}^{2}}+2x}}{{{x}^{2}}+mx-m-3}\) có đồ thị \(\left( C \right)\). Giá trị của \(m\) để \(\left( C \right)\) có đúng hai tiệm cận thuộc tập nào sau đây?
Cho hàm số \(y=f\left( x \right)\) có đồ thị như hình vẽ. Hàm số \(y=f\left( x \right)\) đồng biến trên khoảng nào dưới đây ?
Khoảng nghịch biến của hàm số \(y={{x}^{3}}-3x+3\) là \(\left( a;b \right)\) thì \(P={{a}^{2}}-2ab\) bằng
Tập xác định của hàm số \(y={{\log }_{12}}\left( {{x}^{2}}-5x-6 \right)\)
Phương trình \({{2}^{{{x}^{2}}+x-3}}=8\) có hai nghiệm là \(a,b.\) Khi đó \(a+b\) bằng
Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy \(ABC\) vuông tại \(A,AB=a\sqrt{3},AC=AA'=a.\) Sin góc giữa đường thẳng \(AC'\) và mặt phẳng \(\left( BCC'B' \right)\) bằng