Cho hình chóp tứ giác đều \(S.ABCD\) có \(SA = \sqrt {11} a,\) côsin của góc hợp bởi hai mặt phẳng \(\left( {SBC} \right)\) và \(\left( {SCD} \right)\) bằng \(\frac{1}{{10}}\). Thể tích của khối chóp \(S.ABCD\) bằng
A. \(3{a^3}\)
B. \(9{a^3}\)
C. \(4{a^3}\)
D. \(12{a^3}\)
Lời giải của giáo viên
Gọi \(x\) là độ dài cạnh đáy của chóp đều \(S.ABCD\).
Gọi \(O = AC \cap BD \Rightarrow SO \bot \left( {ABCD} \right)\).
Ta có:
\(\left\{ \begin{array}{l}BD \bot AC\,\,\left( {gt} \right)\\BD \bot SO\,\,\left( {SO \bot \left( {ABCD} \right)} \right)\end{array} \right. \Rightarrow BD \bot \left( {SAC} \right) \Rightarrow BD \bot SC\).
Trong \(\left( {SBC} \right)\) kẻ \(BH \bot SC\,\,\left( {H \in SC} \right)\) ta có
\(\left\{ \begin{array}{l}BH \bot SC\\BD \bot SC\,\,\left( {cmt} \right)\end{array} \right. \Rightarrow SC \bot \left( {BDH} \right) \Rightarrow SC \bot DH\).
Ta có : \(\left\{ \begin{array}{l}\left( {SBC} \right) \cap \left( {SCD} \right) = SC\\\left( {SBC} \right) \supset BH \bot SC\\\left( {SCD} \right) \supset DH \bot SC\end{array} \right. \Rightarrow \angle \left( {\left( {SBC} \right);\left( {SCD} \right)} \right) = \angle \left( {BH;DH} \right) \Rightarrow \left[ \begin{array}{l}\cos \angle BHD = \frac{1}{{10}}\\\cos \angle BHD = - \frac{1}{{10}}\end{array} \right.\).
Dễ dàng chứng minh được \(\Delta BHC = \Delta DHC \Rightarrow HB = HD \Rightarrow \Delta HBD\) cân tại \(H\).
Xét tam giác \(SBC\) ta có : \(\cos \angle C = \frac{{B{C^2} + S{C^2} - S{B^2}}}{{2BC.SC}} = \frac{{{x^2}}}{{2x.\sqrt {11} a}} = \frac{{x\sqrt {11} }}{{22a}}\)
\( \Rightarrow HC = BC.\cos \angle C = \frac{{{x^2}\sqrt {11} }}{{22a}}\).
\( \Rightarrow HB = \sqrt {B{C^2} - H{C^2}} = \sqrt {{x^2} - \frac{{{x^4}}}{{44{a^2}}}} = \frac{{x\sqrt {{a^2} - {x^2}} }}{{2a\sqrt {11} }} = HD\)
Xét tam giác \(BDH\) có :
\(\cos \angle BHD = \frac{{H{B^2} + H{D^2} - B{D^2}}}{{2HB.HD}} = \frac{{2{x^2} - \frac{{{x^4}}}{{22{a^2}}} - 2{x^2}}}{{2\left( {{x^2} - \frac{{{x^4}}}{{44{a^2}}}} \right)}} = \frac{{2{x^2} - \frac{{{x^4}}}{{22{a^2}}} - 2{x^2}}}{{2{x^2} - \frac{{{x^4}}}{{22{a^2}}}}} = 1 - \frac{{44{x^2}{a^2}}}{{44{x^2}{a^2} - {x^4}}}\)
TH1: \(\cos \angle BHD = \frac{1}{{10}} \Leftrightarrow 1 - \frac{{44{x^2}{a^2}}}{{44{x^2}{a^2} - {x^4}}} = \frac{1}{{10}} \Leftrightarrow \frac{{44{x^2}{a^2}}}{{44{x^2}{a^2} - {x^4}}} = \frac{9}{{10}}\)
\( \Leftrightarrow 440{x^2}{a^2} = 396{x^2}{a^2} - 9{x^4} \Leftrightarrow 9{x^4} = - 44{x^2}{a^2}\) (vô nghiệm)
TH2: \(\cos \angle BHD = - \frac{1}{{10}} \Leftrightarrow 1 - \frac{{44{x^2}{a^2}}}{{44{x^2}{a^2} - {x^4}}} = - \frac{1}{{10}} \Leftrightarrow \frac{{44{x^2}{a^2}}}{{44{x^2}{a^2} - {x^4}}} = \frac{{11}}{{10}}\)
\(\begin{array}{l} \Leftrightarrow 440{x^2}{a^2} = 484{x^2}{a^2} - 11{x^4} \Leftrightarrow 11{x^4} = 44{x^2}{a^2} \Leftrightarrow {x^2} = 4{a^2} \Leftrightarrow x = 2a\\ \Rightarrow OA = \frac{1}{2}AC = \frac{1}{2}.2a\sqrt 2 = a\sqrt 2 \end{array}\).
Xét tam giác vuông \(SOA\) có : \(SO = \sqrt {S{A^2} - O{A^2}} = \sqrt {11{a^2} - 2{a^2}} = 3a\).
Vậy \({V_{S.ABCD}} = \frac{1}{3}SO.{S_{ABCD}} = \frac{1}{3}.3a.{\left( {2a} \right)^2} = 4{a^3}\).
Chọn C.
CÂU HỎI CÙNG CHỦ ĐỀ
Gọi \({x_1},\,{x_2}\) là các nghiệm phức của phương trình \({z^2} + 4z + 7 = 0\) . Số phức \({z_1}\overline {{z_2}} + \overline {{z_1}} {z_2}\) bằng
Cho hàm số \(f\left( x \right)\) dương thỏa mãn \(f\left( 0 \right) = e\) và \({x^2}f'\left( x \right) = f\left( x \right) + f'\left( x \right),\,\forall x \ne \pm 1\). Giá trị \(f\left( {\dfrac{1}{2}} \right)\) là:
Trong không gian tọa độ Oxyz, mặt phẳng chứa trục Oz và đi qua điểm \(I\left( {1;2;3} \right)\)có phương trình là
Cho hình nón tròn xoay có bán kính đáy bằng \(3\) và diện tích xung quanh bằng \(6\sqrt 3 \pi \) . Góc ở đỉnh của hình nón đã cho bằng
Cho các số phức \(z = - 1 + 2i,{\rm{w}} = 2 - i.\) Điểm nào trong hình bên biểu diễn số phức \(z + {\rm{w}}?\)
Cho hình lập phương \(ABCD.A'B'C'D'\) có \(I,J\) tương ứng là trung điểm của \(BC\) và \(BB'\) . Góc giữa hai đường thẳng \(AC\) và \(IJ\) bằng
Cho số phức z thỏa mãn \({\left( {1 - \sqrt 3 i} \right)^2}z = 3 - 4i.\) Môđun của z bằng:
Cho khối lăng trụ tứ giác đều \(ABCD.A'B'C'D'\) có khoảng cách giữa AB và A’D bằng 2, đường chéo của mặt bên bằng 5. Biết \(A'A > AD\). Thể tích lăng trụ là
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật với \(Ab = 3a,\,BC = a\) , cạnh bên \(SD = 2a\) và \(SD\) vuông góc với mặt phẳng đáy. Thể tích khối chóp \(S.ABCD\) bằng
Trong không gian Oxyz, cho hai mặt phẳng \(\left( P \right):x - 3y + 2z - 1 = 0,\,\,\left( Q \right):x - z + 2 = 0.\) Mặt phẳng \(\left( \alpha \right)\) vuông góc với cả (P) và (Q) đồng thời cắt trục Ox tại điểm có hoành độ bằng 3. Phương trình của \(\left( \alpha \right)\) là:
Trong không gian \(Oxyz,\) cho \(E\left( { - 1;0;2} \right)\) và \(F\left( {2;1; - 5} \right)\). Phương trình đường thẳng \({\rm{EF}}\) là
Trong không gian \(Oxyz\), cho \(\overrightarrow a \left( { - 3;4;\,0} \right)\) và \(\overrightarrow b \,\left( {5;\,0;\,12} \right)\). Côsin của góc giữa \(\overrightarrow {a\,} \) và \(\overrightarrow b \) bằng
Đạo hàm của hàm số \(f\left( x \right) = \frac{{{3^x} - 1}}{{{3^x} + 1}}.\) là:
Trong không gian \(Oxyz\) , mặt phẳng \(\left( P \right)\) đi qua điểm \(M\left( {3; - 1;4} \right)\) đồng thời vuông góc với giá của vectơ \(\overrightarrow a \left( {1; - 1;2} \right)\) có phương trình là
Một vật rơi tự do theo phương trình \(s = \frac{1}{2}g{t^2},\) trong đó \(g \approx 9,8m/{s^2}\) là gia tốc trọng trường. Giá trị gần đúng của vận tốc tức thời của chuyển động tại thời điểm \(t = 4s\) là