Cho hình \(H\) là đa giác đều có \(24\) đỉnh. Chọn ngẫu nhiên \(4\) đỉnh của \(H.\) Tính xác suất sao cho \(4\) đỉnh được chọn tạo thành một hình chữ nhật nhưng không phải hình vuông.
A. \(\dfrac{1}{{161}}\)
B. \(\dfrac{{45}}{{1771}}\)
C. \(\dfrac{2}{{77}}\)
D. \(\dfrac{{10}}{{1771}}\)
Lời giải của giáo viên
Số phần tử của không gian mẫu \(n\left( \Omega \right) = C_{24}^4\)
Ta vẽ đường tròn ngoại tiếp đa giác đều 24 đỉnh. Vẽ một đường kính của đường tròn này. Khi đó hai nửa đường tròn đều chứa 12 đỉnh.
Với mỗi đỉnh thuộc nửa đường tròn thứ nhất ta đều có một đỉnh đối xứng với nó qua đường kính và thuộc nửa đường tròn còn lại.
Như vậy cứ hai đỉnh thuộc nửa đường tròn thứ nhất ta xác định được hai đỉnh đối xứng với nó qua đường kính và thuộc nửa đường tròn còn lại, bốn đỉnh này tạo thành một hình chữ nhật.
Vậy số hình chữ nhật có 4 đỉnh là các đỉnh của đa giác đã cho là \(C_{12}^2\) .
Nhận thấy rằng trong số các hình chữ nhật tạo thành có \(24:4 = 6\) hình vuông (vì hình chữ nhật có các cạnh bằng nhau là hình vuông)
Nên số hình chữ nhật mà không phải hình vuông là \(C_{12}^2 - 6\) .
Xác suất cần tìm là \(P = \dfrac{{C_{12}^2 - 6}}{{C_{24}^4}} = \dfrac{{10}}{{1771}}\).
Chọn D.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình chóp \(S.ABC\) có \(SA \bot \left( {ABC} \right),\) tam giác \(ABC\) vuông ở \(B.\) \(AH\) là đường cao của \(\Delta SAB.\) Tìm khẳng định sai.
Thể tích khối lăng trụ có diện tích đáy là \(B\) và chiều cao \(h\) được tính bởi công thức
Trong không gian \(Oxyz\), phương trình của mặt phẳng \(\left( P \right)\) đi qua điểm \(B\left( {2;1; - 3} \right)\), đồng thời vuông góc với hai mặt phẳng \(\left( Q \right):x + y + 3z = 0,\left( R \right):2x - y + z = 0\) là:
Cho lăng trụ đều \(ABC.EFH\) có tất cả các cạnh bằng \(a\). Gọi \(S\) là điểm đối xứng của \(A\) qua \(BH\). Thể tích khối đa diện \(ABCSFH\) bằng
Tiếp tuyến với đồ thị hàm số \(y = {x^3} + 3{x^2} - 2\) tại điểm có hoành độ bằng \( - 3\) có phương trình là
Cho hình chóp \(S.ABCD\) đều có \(AB = 2\) và \(SA = 3\sqrt 2 .\) Bán kính của mặt cầu ngoại tiếp hình chóp đã cho bằng
Gọi \(S\) là tập hợp các giá trị thực của tham số \(m\) sao cho phương trình \({x^9} + 3{x^3} - 9x = m + 3\sqrt[3]{{9x + m}}\) có đúng hai nghiệm thực. Tính tổng các phần tử của \(S\).
Hình nón có diện tích xung quanh bằng \(24\pi \) và bán kính đường tròn đáy bằng \(3\). Đường sinh của hình nón có độ dài bằng:
Trong không gian với hệ tọa độ \(Oxyz,\) cho mặt phẳng \(\left( P \right):x - 2y + 2z - 2 = 0\) và điểm \(I\left( { - 1;2; - 1} \right)\). Viết phương trình mặt cầu \(\left( S \right)\) có tâm \(I\) và cắt mặt phẳng \(\left( P \right)\) theo giao tuyến là đường tròn có bán kính bằng \(5.\)
Tập hợp tất cả các giá trị của tham số thực \(m\) để hàm số \(y = \ln \left( {{x^2} + 1} \right) - mx + 1\) đồng biến trên \(\mathbb{R}.\)
Trong không gian \(Oxyz,\) cho mặt phẳng \(\left( P \right):2x - y + z + 4 = 0.\) Khi đó mặt phẳng \(\left( P \right)\) có một véc tơ pháp tuyến là
Tìm giá trị cực tiểu \({y_{CT}}\) của hàm số \(y = {x^3} - 3{x^2}\)
Cho \(\int\limits_1^2 {f\left( x \right)dx = 1} \) và \(\int\limits_2^3 {f\left( x \right)dx = - 2.} \) Giá trị của \(\int\limits_1^3 {f\left( x \right)dx} \) bằng
Cho một hình trụ có chiều cao bằng \(2\) và bán kính đáy bằng \(3\). Thể tích khối trụ đã cho bằng
Trong không gian với hệ tọa độ \(Oxyz\), cho \(\overrightarrow a = \overrightarrow i + 3\overrightarrow j - 2\overrightarrow k \). Tọa độ của véc tơ \(\overrightarrow a \) là