Cho hình tứ diện \(ABCD\) có \(AB,AC,AD\) đôi một vuông góc \(AB=6a,AC=8a,AD=12a,\) với \(a>0,a\in \mathbb{R}.\) Gọi \(E,F\) tương ứng là trung điểm của hai cạnh \(BC,BD. \) Tính khoảng cách \(d\) từ điểm \(B\) đến mặt phẳng \(\left( AEF \right)\) theo \(a.\)
A. \(d=\frac{24\sqrt{29}a}{29}.\)
B. \(d=\frac{8\sqrt{29}a}{29}.\)
C. \(d=\frac{6\sqrt{29}a}{29}.\)
D. \(d=\frac{12\sqrt{29}a}{29}.\)
Lời giải của giáo viên
Ta có \(AB,AC,AD\) đôi một vuông góc nên \(AD\bot \left( ABC \right).\)
Gọi \(K\) là trung điểm của \(AB,\) vì \(F\) là trung điểm của \(BD\) suy ra \(FK//AD\) mà \(AD\bot \left( ABC \right)\Rightarrow FK\bot \left( ABC \right)\) hay \(FK\bot \left( AKE \right).\)
Kẻ \(\left\{ \begin{array}{l} KG \bot AE\left( {G \in AE} \right)\\ KH \bot FG\left( {H \in GF} \right) \end{array} \right. \Rightarrow d\left( {K,\left( {AEF} \right)} \right) = KH.\) Mặt khác \(BK\) cắt mặt phẳng \(\left( AEF \right)\) tại \(A.\)
Suy ra \(\frac{d\left( B,\left( AEF \right) \right)}{d\left( K,\left( AEF \right) \right)}=\frac{BA}{KA}=2\Rightarrow d\left( B,\left( AEF \right) \right)=2d\left( K,\left( AEF \right) \right).\)
Trong tam giác \(AKE\) vuông tại K và tam giác FKG vuông tại K, ta có:
\(\frac{1}{K{{H}^{2}}}=\frac{1}{K{{F}^{2}}}+\frac{1}{K{{G}^{2}}}=\frac{1}{K{{F}^{2}}}+\frac{1}{K{{A}^{2}}}+\frac{1}{K{{E}^{2}}}=\frac{1}{{{\left( 6a \right)}^{2}}}+\frac{1}{{{\left( 3a \right)}^{2}}}+\frac{1}{{{\left( 4a \right)}^{2}}}=\frac{29}{144{{a}^{2}}}\Rightarrow KH=\frac{12\sqrt{29}a}{29}.\)
Vậy \(d=\frac{24\sqrt{29}a}{29}.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y=\frac{5x+9}{x-1}\) khẳng định nào sau đây là đúng?
Cho hàm số \(f\left( x \right),\) hàm số \(y=f'\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ bên
Bất phương trình \(f\left( x \right)<2x+m\) (\(m\) là tham số thực) có nghiệm đúng với mọi \(x\in \left( 0;2 \right)\) khi và chỉ khi
Một lớp có 30 học sinh, trong đó có 3 cán sự lớp. Hỏi có bao nhiêu cách cứ 4 bạn đi dự đại hội đoàn trường sao cho trong 4 học sinh đó có ít nhất một cán sự lớp
Cho hình chóp tứ giác đều \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a,\) cạnh bên tạo với đáy một góc \({{60}^{0}}.\) Gọi G là trọng tâm của tam giác \(SBD. \) Mặt phẳng \(\left( \alpha \right)\) đi qua \(A,G\) và song song với \(BD,\) cắt \(SB,SC,SD\) lần lượt tại \(E,M,F.\) Tính thể tích \(V\) của khối chóp \(S.AEMF.\)
Cho hàm số \(y=f\left( x \right)=a{{x}^{3}}+b{{x}^{2}}+cx+d\) có đồ thị như hình vẽ. Tìm tập hợp tất cả các giá trị thực của tham số \(m\) để phương trình \(f\left( {{\sin }^{2}}x \right)=m\) có nghiệm
Cho hàm số \(y=\frac{ax+b}{cx+d}\) có đồ thị như hình vẽ
Khẳng định nào sau đây đúng?
Trong khai triển \({{(a+b)}^{n}}\), số hạng tổng quát của khai triển là.
Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy là tam giác vuông và \(AB=BC=a,AA'=a\sqrt{2},M\) là trung điểm \(BC. \) Tính khoảng cách \(d\) của hai đường thẳng \(AM\) và \(B'C. \)
Đồ thị hàm số \(\left( C \right):y=\frac{2x+1}{x+1}\) cắt đường thẳng \(d:y=x+m\) tại hai điểm phân biệt \(A,B\) thỏa mãn \(\Delta OAB\) vuông tại \(O\) khi \(m=\frac{a}{b}.\) Biết \(a,b\) là nguyên dương; \(\frac{a}{b}\) tối giản. Tính \(S=a+b.\)
Cho hàm số \(y=f\left( x \right)\) xác định, liên tục trên \(\mathbb{R}\) và có bảng biến thiên như hình vẽ dưới đây
Số nghiệm thực của phương trình \(3f\left( x \right)+2=0\) là
Cho hàm số \(y=f(x)\) có bảng biến thiên như sau:
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Tổng diện tích tất cả các mặt của hình bát diện đều cạnh \(a\) bằng
Thiết diện qua trục của một hình nón là tam giác đều cạnh \(2a.\) Đường cao của hình nón là
Cho cấp số cộng \(\left( {{u}_{n}} \right)\) với \({{u}_{n}}=4n-3.\) Tìm công sai \(d\) của cấp số cộng.
Rút gọn biểu thức \(P={{x}^{\frac{1}{3}}}.\sqrt[6]{x}\) với \(x>0\) ta được