Cho khối chóp S.ABC có đáy là tam giác đều ABC cạnh a. Hai mặt (SAB) và (SAC) cùng vuông góc với đáy. Tính thể tích khối chóp biết \(SC = a\sqrt 3 \)?
A. \(\frac{{2{a^3}\sqrt 6 }}{9}\)
B. \(\frac{{{a^3}\sqrt 6 }}{{12}}\)
C. \(\frac{{{a^3}\sqrt 3 }}{4}\)
D. \(\frac{{{a^3}\sqrt 3 }}{2}\)
Lời giải của giáo viên
CÂU HỎI CÙNG CHỦ ĐỀ
Mỗi đỉnh của một hình đa diện là đỉnh chung của ít nhất
Trong mặt phẳng với hệ tọa độ Oxy, cho hình thoi ABCD có tâm I(2; 1) vàAC = 2BD. Điểm \(M\left( {0;\frac{1}{3}} \right)\) thuộc đường thẳng AB, điểm N(0; 7) thuộc đường thẳng CD. Tìm tọa độ đỉnh B biết B có hoành độ dương.
Số tiếp tuyến đi qua điểm A(1;-6) của đồ thị hàm số \(y = {x^3} - 3x + 1\) là:
Giá trị nhỏ nhất của hàm số \(y = 1 + x + \frac{4}{x}\) trên đọan [-3; -1] bằng
Có bao nhiêu giá trị nguyên của tham số thực m thuộc khoảng \(( - 1000;1000)\) để hàm số \(y = 2{x^3} - 3(2m + 1){x^2} + 6m(m + 1)x + 1\) đồng biến trên khoảng \((2; + \infty )\)?
Hàm số \(y = a{x^4} + b{x^2} + c\) có đồ thị như hình vẽ dưới đây. Mệnh đề nào sau đây là đúng?
Cho hình chóp đều S.ABC có cạnh đáy bằng a, góc giữa mặt bên và đáy bằng 600. Tính theo thể tích khối chóp S.ABC.
Cho khối chóp S.ABCD có đáy là hình bình hành, gọi B’ và D’ theo thứ tự là trung điểm các cạnh SB, SD. Mặt phẳng (AB’D’) cắt cạnh SC tại C’. Tính tỷ số thể tích của hai khối đa diện được chia ra bởi mặt phẳng (AB’D’)
Tập xác định của hàm số \(f(x) = \frac{{ - {x^2} + 2x}}{{{x^2} + 1}}\) là tập hợp nào sau đây?
Giới hạn sau \(\mathop {\lim }\limits_{x \to + \infty } \frac{{{x^2} - 2x + 1}}{{2{x^2} + x - 1}}\) có giá trị là:
Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông tại B, BC=a, mặt phẳng (A’BC) tạo với đáy một góc 300 và tam giác A’BC có diện tích bằng \({a^2}\sqrt 3 \). Tính thể tích khối lăng trụ ABC.A’B’C’.
Cho hàm số \(y = \frac{{x - 1}}{{x + 1}}\) có đồ thị (C). Với giá trị nào của m để đường thẳng y = -x + m cắt đồ thị (C) tại hai điểm phân biệt?
Cho \(\overrightarrow a = (3; - 4),\overrightarrow b = ( - 1;2)\). Tìm tọa độ của \(\overrightarrow a + \overrightarrow b \)