Lời giải của giáo viên
Ta có: \(\left\{ \begin{array}{l}2SA' = 3AA' = 3\left( {SA - SA'} \right)\\3SB' = BB' = SB - SB'\end{array} \right. \)
\(\Rightarrow \left\{ \begin{array}{l}5SA' = 3SA\\4SB' = SB\end{array} \right.\)
\(\Leftrightarrow \left\{ \begin{array}{l}\dfrac{{SA'}}{{SA}} = \dfrac{3}{5}\\\dfrac{{SB'}}{{SB}} = \dfrac{1}{4}\end{array} \right.\)
Khi đó \(\dfrac{{{V_{S.A'B'C'}}}}{{{V_{S.ABC}}}} = \dfrac{{SA'}}{{SA}}.\dfrac{{SB'}}{{SB}} = \dfrac{3}{5}.\dfrac{1}{4} = \dfrac{3}{{20}}\)
Chọn đáp án A.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình hộp ABCD.A’B’C’D’ có đáy ABCD là hình thoi cạnh a,\(\widehat {BCD} = {120^0}\) và \(AA' = \dfrac{{7a}}{2}\). Hình chiếu vuông góc của A’ lên mặt phẳng (ABCD) trùng với giao điểm của AC và BD. Tính theo a thể tích khối hộp ABCD.A’B’C’D’.
Cho hai số thực a và b, với 0 < a< b < 1. Khẳng định nào sau đây đúng ?
Tìm nguyên hàm của \(f(x) = 4\cos x + \dfrac{1}{{{x^2}}}\)trên \((0; + \infty )\).
Gọi \(\varphi \) là góc giữa hai vectơ \(\overrightarrow a = \left( {1;2;0} \right)\) và \(\overrightarrow b = \left( {2;0; - 1} \right)\), khi đó \(\cos \varphi \) bằng
Mô đun của số phức z thỏa mãn \(\dfrac{{2 + i}}{{1 - i}}z = \dfrac{{ - 1 + 3i}}{{2 + i}}\) là:
Cho A và B là các điểm biểu diễn các số phức \({z_1} = 1 + 2i\,,\,\,{z_2} = 1 - 2i\). Diện tích của tam giác OAB bằng:
Trong không gian \(BD\), cho mặt cầu \(\overrightarrow {A'X} = \left( {\dfrac{a}{2};\dfrac{a}{2}; - b} \right)\); và mặt phẳng \(\overrightarrow {MX} = \left( { - \dfrac{a}{2}; - \dfrac{a}{2}; - \dfrac{b}{2}} \right)\).
Trong các mệnh đề sau, mệnh đề nào đúng?
Cho hình nón có tỉ lệ giữa bán kính đáy và đường sinh bằng \(\dfrac{1}{3}\). Hình cầu nội tiếp hình nón này có thể tích bằng V. Thể tích hình nón bằng.
Biết F(x) là nguyên hàm của \(f(x) = \dfrac{1}{{x - 1}}\,,\,\,F(2) = 1\). Khi đó F(3) bằng :
Tích vô hướng của hai vectơ \(\overrightarrow a = \left( { - 2;2;5} \right),\,\overrightarrow b = \left( {0;1;2} \right)\) trong không gian bằng
Tìm họ các nguyên hàm của hàm số \(f(x) = \dfrac{1}{{6x - 2}}\).
Tâm đối xứng I của đồ thị hàm số \(y = - {{2x - 1} \over {x + 1}}\) là:
Tìm tập nghiệm của bất phương trình \({7^x} \ge 10 - 3x\).
Cho số phức \(z = - \dfrac{1}{2} + \dfrac{{\sqrt 3 }}{2}i\). Khi đó số phức \({\left( {\overline z } \right)^2}\) bằng ;