Câu hỏi Đáp án 2 năm trước 31

Cho lăng trụ đều ABC.EFH có tất cả các cạnh bằng a. Gọi S là điểm đối xứng của A qua BH. Thể tích khối đa diện ABCSFH bằng

A. \(\frac{{{a^3}}}{6}\)

B. \(\frac{{\sqrt 3 {a^3}}}{6}\)

C. \(\frac{{{a^3}}}{3}\)

D. \(\frac{{\sqrt 3 {a^3}}}{3}\)

Đáp án chính xác ✅

Lời giải của giáo viên

verified HocOn247.com

Gọi I là hình chiếu của A lên BH. Khi đó S đối xứng với A qua BH hay S đối xứng với A qua I.

Chia khối đa diện ABCSFH thành hai khối chóp A.BCHFS.BCHF thì ta có \({V_{ABCHFS}} = {V_{A.BCHF}} + {V_{S.BCHF}}\) 

Lại có SI = AI và \(SA \cap \left( {BCHF} \right)\) tại I nên \(d\left( {A;\left( {BCHF} \right)} \right) = d\left( {S,\left( {BCHF} \right)} \right)\).

Suy ra \({V_{A.BCHF}} = {V_{S.BCHF}} \Rightarrow {V_{ABCHFS}} = 2{V_{A.BCHF}}\) 

Dễ thấy \({V_{A.BCHF}} = {V_{ABC.EFH}} - {V_{A.EFH}} = {V_{ABC.EFH}} - \frac{1}{3}{V_{ABC.EFH}} = \frac{2}{3}{V_{ABC.EFH}}\) 

Mà \({V_{ABC.EFH}} = AE.{S_{ABC}} = a.\frac{{{a^2}\sqrt 3 }}{4} = \frac{{{a^3}\sqrt 3 }}{4}\) nên

\(\begin{array}{l}
{V_{A.BCHF}} = \frac{2}{3}{V_{ABC.EFH}} = \frac{2}{3}.\frac{{{a^3}\sqrt 3 }}{4} = \frac{{{a^3}\sqrt 3 }}{6}\\
 \Rightarrow {V_{ABCHFS}} = 2{V_{A.BCHF}} = 2.\frac{{{a^3}\sqrt 3 }}{6} = \frac{{{a^3}\sqrt 3 }}{3}
\end{array}\)

Vậy \({V_{ABCHFS}} = \frac{{{a^3}\sqrt 3 }}{3}\).

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho hình H là đa giác đều có 24 đỉnh. Chọn ngẫu nhiên 4 đỉnh của H. Tính xác suất sao cho 4 đỉnh được chọn tạo thành một hình chữ nhật nhưng không phải hình vuông.

Xem lời giải » 2 năm trước 42
Câu 2: Trắc nghiệm

Cho a là số thực dương bất kì khác 1. Tính \(S = {\log _a}\left( {{a^3}\sqrt[4]{a}} \right)\).

Xem lời giải » 2 năm trước 41
Câu 3: Trắc nghiệm

Trong không gian Oxyz, cho hai mặt phẳng \(\left( P \right):x + 2y - 2z - 6 = 0\) và \(\left( Q \right):x + 2y - 2z + 3 = 0\). Khoảng cách giữa hai mặt phẳng (P) và (Q) bằng

Xem lời giải » 2 năm trước 41
Câu 4: Trắc nghiệm

Xét hai số thực a, b dương khác 1. Mệnh đề nào sau đây đúng?

Xem lời giải » 2 năm trước 41
Câu 5: Trắc nghiệm

Trong không gian Oxyz, phương trình của mặt phẳng (P) đi qua điểm B(2;1;-3), đồng thời vuông góc với hai mặt phẳng \(\left( Q \right):x + y + 3z = 0,\left( R \right):2x - y + z = 0\) là:

Xem lời giải » 2 năm trước 41
Câu 6: Trắc nghiệm

Đồ thị hàm số \(y = \frac{{x + 1}}{{4x - 1}}\) có đường tiệm cận ngang là đường thẳng nào sau đây?

Xem lời giải » 2 năm trước 40
Câu 7: Trắc nghiệm

Trong không gian với hệ tọa độ Oxyz, cho \(\overrightarrow a  = \overrightarrow i  + 3\overrightarrow j  - 2\overrightarrow k \). Tọa độ của vectơ \(\overrightarrow a \) là

Xem lời giải » 2 năm trước 39
Câu 8: Trắc nghiệm

Đường cong trong hình vẽ sau đây là đồ thị của hàm số nào?

 

Xem lời giải » 2 năm trước 39
Câu 9: Trắc nghiệm

Biết bất phương trình \({\log _5}\left( {{5^x} - 1} \right).{\log _{25}}\left( {{5^{x + 1}} - 5} \right) \le 1\) có tập nghiệm là đoạn [a;b]. Giá trị của \(a+b\) bằng

Xem lời giải » 2 năm trước 39
Câu 10: Trắc nghiệm

Trong không gian Oxyz, cho điểm \(A\left( { - 4;0;1} \right)\) và mặt phẳng \(\left( P \right):x - 2y - z + 4 = 0\). Mặt phẳng (Q) đi qua điểm A và song song với mặt phẳng (P) có phương trình là

Xem lời giải » 2 năm trước 39
Câu 11: Trắc nghiệm

Trong không gian Oxyz, cho mặt cầu \(\left( S \right):{\left( {x - 3} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 1} \right)^2} = 4\) và hai điểm A(-1;2;-3); B(5;2;3). Gọi M là điểm thay đổi trên mặt cầu (S). Tính giá trị lớn nhất của biểu thức \(2M{A^2} + M{B^2}\).

Xem lời giải » 2 năm trước 38
Câu 12: Trắc nghiệm

Từ các chữ số 1; 5; 6; 7 có thể lập được bao nhiêu số tự nhiên có 4 chữ số đôi một khác nhau?

Xem lời giải » 2 năm trước 37
Câu 13: Trắc nghiệm

Tìm nghiệm của phương trình \({\log _2}\left( {x - 5} \right) = 4\).

Xem lời giải » 2 năm trước 37
Câu 14: Trắc nghiệm

Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):2x - y + z + 4 = 0\). Khi đó mặt phẳng (P) có một vectơ pháp tuyến là

Xem lời giải » 2 năm trước 36
Câu 15: Trắc nghiệm

Cho một hình trụ có chiều cao bằng 2 và bán kính đáy bằng 3. Thể tích khối trụ đã cho bằng

Xem lời giải » 2 năm trước 36

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »