Cho phương trình \({{27}^{x}}+3x{{.9}^{x}}+\left( 3{{x}^{2}}+1 \right){{3}^{x}}=\left( {{m}^{3}}-1 \right){{x}^{3}}+\left( m-1 \right)x,m\) là tham số. Biết rằng giá trị \(m\) nhỏ nhất để phương trình đã cho có nghiệm trên \(\left( 0;+\infty \right)\) là \(a+e\ln b,\) với \(a,b\) là các số nguyên. Giá trị của biểu thức \(17a+3b\)
A. 26
B. 48
C. 54
D. 18
Lời giải của giáo viên
Phương trình đã cho tương đương
\({{\left( {{3}^{x}} \right)}^{3}}+3x.{{\left( {{3}^{x}} \right)}^{2}}+\left( 3{{x}^{2}}+1 \right){{.3}^{x}}=\left( {{m}^{3}}-1 \right){{x}^{3}}+\left( m-1 \right)x\)
\(\Leftrightarrow {{\left( {{3}^{x}}+x \right)}^{3}}+{{3}^{x}}+x={{\left( mx \right)}^{3}}+mx\left( * \right)\)
Xét hàm số \(f\left( u \right)={{u}^{3}}+u,f'\left( u \right)=3{{u}^{2}}+1>0,\forall u\in \mathbb{R}.\)
Phương trình (*) tương đương \(f\left( {{3}^{x}}+x \right)=f\left( mx \right)\)
Nên \({{3}^{x}}+x=mx\Leftrightarrow m=\frac{{{3}^{x}}}{x}+1,x>0.\)
Xét hàm số \(g\left( x \right)=\frac{{{3}^{x}}}{x}+1,x>0.\)
Ta có \(g'\left( x \right)=\frac{{{3}^{x}}\left( x\ln 3-1 \right)}{{{x}^{2}}}\Rightarrow g'\left( x \right)=0\Leftrightarrow x={{\log }_{3}}e.\)
Phương trình có nghiệm khi và chỉ khi \(m \ge g\left( {{{\log }_3}e} \right) = 1 + e\ln 3 \Rightarrow \left\{ \begin{array}{l} x = 1\\ b = 3 \end{array} \right..\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\mathbb{R}\) có đồ thị như hình vẽ.
Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \(f\left( \sqrt{4+2f\left( \cos x \right)} \right)=m\) có nghiệm \(x\in \left[ 0;\frac{\pi }{2} \right).\)
Cho hàm số \(y={{x}^{3}}-3{{x}^{2}}+mx-1\) với \(m\) là tham số thực. Tìm tất cả các giá trị của tham số \(m\) để hàm số đạt cực trị tại hai điểm \({{x}_{1}};{{x}_{2}}\) thỏa mãn \(x_{1}^{2}+x_{2}^{2}=6.\)
Phương trình \(\log _{2}^{2}x={{\log }_{2}}\frac{{{x}^{4}}}{2}\) có nghiệm là \(a,b.\) Khi đó \(a.b\) bằng
Có bao nhiêu giá trị nguyên dương của \(m\) để hàm số \(y=\frac{x-8}{x-m}\) đồng biến trên từng khoảng xác định của nó?
Tổng các nghiệm của phương trình \(\log _{2}^{2}\left( 3x \right)+{{\log }_{3}}\left( 9x \right)-7=0\) bằng
Tìm hoành độ các giao điểm của đường thẳng \(y=2x-\frac{13}{4}\) với đồ thị hàm số \(y=\frac{{{x}^{2}}-1}{x+2}.\)
Khoảng nghịch biến của hàm số \(y={{x}^{3}}-3x+3\) là \(\left( a;b \right)\) thì \(P={{a}^{2}}-2ab\) bằng
Cho hàm số \(y=\frac{x-\sqrt{{{x}^{2}}+2x}}{{{x}^{2}}+mx-m-3}\) có đồ thị \(\left( C \right)\). Giá trị của \(m\) để \(\left( C \right)\) có đúng hai tiệm cận thuộc tập nào sau đây?
Tập xác định của hàm số \(y={{\log }_{12}}\left( {{x}^{2}}-5x-6 \right)\)
Hàm số \(f\left( x \right)={{\log }_{3}}\left( 2x+1 \right)\) có đạo hàm là
Tìm giá trị của \(m\) để hàm số \(y={{x}^{3}}-{{x}^{2}}+mx-1\) có hai điểm cực trị.
Phương trình \({{2}^{{{x}^{2}}+x-3}}=8\) có hai nghiệm là \(a,b.\) Khi đó \(a+b\) bằng