Câu hỏi Đáp án 2 năm trước 30

Cho phương trình \({x^3} + {x^2} - (m + 1)x + 8 = (x - 3)\sqrt {{x^3} + {x^2} - mx + 6} \). Gọi S là tập hợp các giá trị nguyên của m và \(m \le 10\) thì phương trình có nghiệm. Tính tổng T các phần tử của S?

A. T = 10

B. T = 19

Đáp án chính xác ✅

C. T = 9

D. T = 52

Lời giải của giáo viên

verified HocOn247.com

Điều kiện:

\(pt \Leftrightarrow {x^3} + {x^2} - mx + 6 - \left( {x - 3} \right)\sqrt {{x^3} + {x^2} - mx + 6}  - \left( {x - 2} \right) = 0\)

Đặt \(t = \sqrt {{x^3} + {x^2} - mx + 6} ,t \ge 0\)

Ta có phương trình: \({t^2} - \left( {x - 3} \right)t - \left( {x - 2} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}
t =  - 1\\
t = x - 2
\end{array} \right.\)

Vậy \(t = x - 2\) có \(\sqrt {{x^3} + {x^2} - mx + 6}  = x - 2 \Leftrightarrow \left\{ \begin{array}{l}
x \ge 2\\
{x^3} + 2 = \left( {m - 4} \right)x
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x \ge 2\\
{x^2} + \frac{2}{x} = m - 4
\end{array} \right.\)

Với \(x \ge 2\) ta có \({x^2} + \frac{2}{x} = \left( {{x^2} + \frac{8}{x} + \frac{8}{x}} \right) - \frac{{14}}{x} \ge 3\sqrt[3]{{{x^2}.\frac{8}{x}.\frac{8}{x}}} - \frac{{14}}{2} = 5\)

Dấu bằng xảy ra khi x = 2

Suy ra để phương trình có nghiệm \(m - 4 \ge 5 \Leftrightarrow m \ge 9\)

Do \(\left\{ \begin{array}{l}
m \in Z\\
m \in \left[ {9;10} \right]
\end{array} \right.\) nên \(m \in \left\{ {9;10} \right\}\)Vậy T = 19

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho hàm số \(y=f(x)\) có đạo hàm \(f'\left( x \right) = \left( {{x^2} - 1} \right)\left( {x - 4} \right)\) với mọi \(x \in R.\) Hàm số \(g\left( x \right) = f\left( {3 - x} \right)\) có bao nhiêu điểm cực đại?

Xem lời giải » 2 năm trước 138
Câu 2: Trắc nghiệm

Cho hàm số \(y=f(x)\) có đồ thị như như hình vẽ bên dưới. Hàm số \(y=f(x)\) nghịch biến trên khoảng nào dưới đây?

Xem lời giải » 2 năm trước 129
Câu 3: Trắc nghiệm

Cho hàm số \(y=f(x)\) có bảng biến thiên như hình bên.

Tọa độ điểm cực đại của đồ thị hàm số \(y=f(x)\) là

Xem lời giải » 2 năm trước 39
Câu 4: Trắc nghiệm

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \(\left( P \right):2x - z + 1 = 0\). Tọa độ một vectơ pháp tuyến của mặt phẳng (P) là

Xem lời giải » 2 năm trước 38
Câu 5: Trắc nghiệm

Cho \(x, y\) là các số thực dương thỏa mãn \({\log _2}\frac{{{x^2} + 5{y^2}}}{{2{x^2} + 10xy + {y^2}}} + 1 + {x^2} - 10xy + 9{y^2} \le 0\). Gọi \(M, m\) lần lượt là giá trị lớn nhất ,giá trị nhỏ nhất của \(P = \frac{{{x^2} + xy + 9{y^2}}}{{xy + {y^2}}}\) .Tính \(T = 10M - m\) ?

Xem lời giải » 2 năm trước 37
Câu 6: Trắc nghiệm

Cho hàm số \(y=x^4-2x^2-3\) có đồ thị như hình bên dưới. Với giá trị nào của tham số m thì phương trình \(x^4-2x^2-3=2m-4\) có hai nghiệm phân biệt.

Xem lời giải » 2 năm trước 37
Câu 7: Trắc nghiệm

Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\frac{{x - 1}}{1} = \frac{{y + 2}}{{ - 1}} = \frac{z}{2}\). Mặt phẳng (P) đi qua điểm M(2;0;-1) và vuông góc với d có phương trình là

Xem lời giải » 2 năm trước 37
Câu 8: Trắc nghiệm

Cho hàm số \(y=f(x)\) có bảng biến thiên như sau

 Tìm giá trị lớn nhất của hàm số \(g\left( x \right) = f\left( {{x^3} - 3x} \right) - \frac{1}{5}{x^5} - \frac{2}{3}{x^3} + 3x - \frac{2}{{15}}\) trên đoạn [-1;2] ?

Xem lời giải » 2 năm trước 35
Câu 9: Trắc nghiệm

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu có phương trình \({x^2} + {y^2} + {z^2} + 2x - 6y - 6 = 0\) Tìm tọa độ tâm I và bán kính R của mặt cầu đó.

Xem lời giải » 2 năm trước 35
Câu 10: Trắc nghiệm

Đồ thị sau đây là của hàm số nào?

Xem lời giải » 2 năm trước 35
Câu 11: Trắc nghiệm

Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm \(A( - 1;3;4),B(9; - 7;2)\). Tìm trên trục Ox tọa độ điểm M sao cho \(M{A^2} + M{B^2}\) đạt giá trị nhỏ nhất.

Xem lời giải » 2 năm trước 35
Câu 12: Trắc nghiệm

Cho hàm số \(y=f(x)\) có bảng biến thiên như sau:

Khẳng định nào sau đây là đúng?

Xem lời giải » 2 năm trước 34
Câu 13: Trắc nghiệm

Một lô hàng gồm 30 sản phẩm trong đó có 20 sản phẩm tốt và 10 sản phẩm xấu. Lấy ngẫu nhiên 3 sản phẩm trong lô hàng. Tính xác suất để 3 sản phẩm lấy ra có ít nhất một sản phẩm tốt.

Xem lời giải » 2 năm trước 34
Câu 14: Trắc nghiệm

Phương trình đường tiệm cận ngang của đồ thị hàm số \(y = 2 + \frac{3}{{1 - x}}\) là:

Xem lời giải » 2 năm trước 33
Câu 15: Trắc nghiệm

Cho khối chóp S.ABC có \(\widehat {ASB} = \widehat {BSC} = \widehat {CSA} = 60^\circ ,\) \(SA = a,SB = 2a,SC = 4a\). Tính thể tích khối chóp S.ABC theo \(a\).

Xem lời giải » 2 năm trước 33

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »