Câu hỏi Đáp án 2 năm trước 32

Cho số nguyên dương \(n\) thỏa mãn điều kiện \(720\left( {C_7^7 + C_8^7 + ....C_n^7} \right) = \dfrac{1}{{4032}}A_{n + 1}^{10}\). Hệ số của \({x^7}\) trong khai triển \({\left( {x - \dfrac{1}{{{x^2}}}} \right)^n}\left( {x \ne 0} \right)\) bằng

A. \( - 560\).

Đáp án chính xác ✅

B. \(120\). 

C. \(560\). 

D. \( - 120\). 

Lời giải của giáo viên

verified HocOn247.com

+ Sử dụng công thức \(C_n^k + C_n^{k + 1} = C_{n + 1}^{k + 1}\), ta có

 \(\begin{array}{l}C_{n + 1}^8 = C_n^8 + C_n^7\\C_n^8 = C_{n - 1}^7 + C_{n - 1}^8\\C_{n - 1}^8 = C_{n - 2}^7 + C_{n - 2}^8\\...\\C_9^8 = C_8^8 + C_8^7\\C_8^8 = C_8^8\end{array}\)

Cộng vế với vế ta được \(C_{n + 1}^8 + C_n^8 + C_{n - 1}^8 + ... + C_9^8 + C_8^8 = C_n^8 + C_n^7 + C_{n - 1}^8 + C_{n - 1}^7 + ... + C_8^8 + C_8^7 + C_8^8\)

Thu gọn ta được \(C_8^8 + C_8^7 + ... + C_n^7 = C_{n + 1}^8\)  mà \(C_8^8 = C_7^7 = 1\) nên \(C_7^7 + C_8^7 + ... + C_n^7 = C_{n + 1}^8\)

Từ đó ta có

\(720\left( {C_7^7 + C_8^7 + ....C_n^7} \right) = \dfrac{1}{{4032}}A_{n + 1}^{10}\)

\( \Leftrightarrow 720.C_{n + 1}^8 = \dfrac{1}{{4032}}A_{n + 1}^{10} \Rightarrow 720.\dfrac{{\left( {n + 1} \right)!}}{{8!\left( {n - 7} \right)!}} = \dfrac{1}{{4032}}\dfrac{{\left( {n + 1} \right)!}}{{\left( {n - 9} \right)!}}\)

\(\begin{array}{l} \Leftrightarrow \dfrac{1}{{56}}\dfrac{{\left( {n + 1} \right)!}}{{\left( {n - 9} \right)!\left( {n - 8} \right)\left( {n - 7} \right)}} = \dfrac{1}{{4032}}.\dfrac{{\left( {n + 1} \right)!}}{{\left( {n - 9} \right)!}}\,\,\,\,\,\,\left( {n > 9} \right)\\ \Leftrightarrow \left( {n - 7} \right)\left( {n - 8} \right) = 72 \Leftrightarrow {n^2} - 15n + 56 = 72\\ \Leftrightarrow {n^2} - 15n - 16 = 0 \Leftrightarrow \left[ \begin{array}{l}n =  - 1\,\,\left( {ktm} \right)\\n = 16\,\,\,\left( {tm} \right)\end{array} \right.\end{array}\)

Với \(n = 16\) ta có \({\left( {x - \dfrac{1}{{{x^2}}}} \right)^{16}} = \sum\limits_{k = 0}^{16} {C_{16}^k.{x^{16 - k}}{{\left( { - \dfrac{1}{{{x^2}}}} \right)}^k}}  = \sum\limits_{k = 0}^{16} {C_{16}^k.{x^{16 - k}}{x^{ - 2k}}{{\left( { - 1} \right)}^k} = \sum\limits_{k = 0}^{16} {C_{16}^k.{x^{16 - 3k}}{{\left( { - 1} \right)}^k}} } \)

Số hạng chứa \({x^7}\) ứng với \(16 - 3k = 7 \Rightarrow k = 3\)

Nên hệ số cần tìm là \(C_{16}^3.{\left( { - 1} \right)^3} =  - 560.\)

Chọn A.

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Một hình trụ có bán kính đáy bằng \(2cm\) và có thiết diện qua trục là một hình vuông. Diện tích xung quanh của hình trụ là 

Xem lời giải » 2 năm trước 45
Câu 2: Trắc nghiệm

Cho tam giác đều \(ABC\) có cạnh bằng \(3a\) . Điểm \(H\) thuộc cạnh \(AC\) với \(HC = a.\) Dựng đoạn thẳng \(SH\) vuông góc với mặt phẳng \(\left( {ABC} \right)\) với \(SH = 2a.\) Khoảng cách từ điểm \(C\) đến mặt phẳng \(\left( {SAB} \right)\) bằng

Xem lời giải » 2 năm trước 43
Câu 3: Trắc nghiệm

Đồ thị hình bên là của hàm số nào?

Xem lời giải » 2 năm trước 41
Câu 4: Trắc nghiệm

Cho hàm số \(y = f\left( x \right)\) và có bảng biến thiên trên \({\rm{[}} - 5;7)\) như sau:

Mệnh đề nào sau đây đúng?   

Xem lời giải » 2 năm trước 41
Câu 5: Trắc nghiệm

Tập hợp tất cả các số thực \(x\) không thỏa mãn bất phương trình  \({9^{{x^2} - 4}} + \left( {{x^2} - 4} \right){.2019^{x - 2}} \ge 1\) là khoảng \(\left( {a;b} \right)\) . Tính \(b - a\)   

Xem lời giải » 2 năm trước 41
Câu 6: Trắc nghiệm

Cho hai số thực \(x,\,y\) thỏa mãn \({x^2} + {y^2} - 4x + 6y + 4 + \sqrt {{y^2} + 6y + 10}  = \sqrt {6 + 4x - {x^2}} \). Gọi \(M,\,m\) lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của biểu thức \(T = \left| {\sqrt {{x^2} + {y^2}}  - a} \right|\). Có bao nhiêu giá trị nguyên thuộc đoạn \(\left[ { - 10;\,10} \right]\) của tham số \(a\) để \(M \ge 2m\)? 

Xem lời giải » 2 năm trước 40
Câu 7: Trắc nghiệm

Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right)\) trên \(\mathbb{R}\) . Hình vẽ bên là đồ thị của hàm số \(y = f'\left( x \right)\) . Hàm số \(g\left( x \right) = f\left( {x - {x^2}} \right)\) nghịch biến trên khoảng nào trong các khoảng dưới đây ?     

Xem lời giải » 2 năm trước 40
Câu 8: Trắc nghiệm

Cho hàm số \(y = \dfrac{{mx - 4}}{{x + 1}}\) (với m là tham số thực) có bảng biến thiên dưới đâyMệnh đề nào sau đây đúng?

Xem lời giải » 2 năm trước 40
Câu 9: Trắc nghiệm

Cho hàm số \(y = {x^4} - 2{x^2} + m - 2\) có đồ thị \(\left( C \right)\). Gọi \(S\) là tập các giá trị của \(m\) sao cho đồ thị \(\left( C \right)\) có đúng một tiếp tuyến song song với trục \(Ox.\) Tổng tất cả các phần tử của \(S\) là 

Xem lời giải » 2 năm trước 39
Câu 10: Trắc nghiệm

Gọi \(M\) và \(m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(f\left( x \right) = 2x - 4\sqrt {6 - x} \) trên \(\left[ { - 3;6} \right]\) . Tổng \(M + m\) có giá trị là  

Xem lời giải » 2 năm trước 39
Câu 11: Trắc nghiệm

Gọi \(S\) là tập hợp các số tự nhiên có ba chữ số (không nhất thiết khác nhau) được lập từ các chữ số \(0;1;2;3;4;5;6;7;8;9\) . Chọn ngẫu nhiên một số \(\overline {abc} \) từ \(S\) . Tính xác suất để số được chọn thỏa mãn \(a \le b \le c.\) 

Xem lời giải » 2 năm trước 38
Câu 12: Trắc nghiệm

Cho hàm số \(y = \frac{{1 - x}}{{{x^2} - 2mx + 4}}\) . Tìm tất cả các giá trị thực của tham số \(m\) để đồ thị hàm số có ba đường tiệm cận. 

Xem lời giải » 2 năm trước 38
Câu 13: Trắc nghiệm

Cho hình chóp đều \(S.ABC\) có đáy là tam giác đều cạnh \(a\) . Gọi \(M,{\rm N}\) lần lượt là trung điểm của \(SB,SC\) . Biết \(\left( {AM{\rm N}} \right) \bot \left( {SBC} \right)\) . Thể tích của khối chóp \(S.ABC\) bằng     

Xem lời giải » 2 năm trước 38
Câu 14: Trắc nghiệm

Cho hình chóp \(O.\,ABC\) có ba cạnh \(OA,\,OB,\,OC\) đôi một vuông góc và \(OA = OB = OC = a\). Gọi \(M\) là trung điểm cạnh \(AB\). Góc hợp bởi hai véc tơ \(\overrightarrow {BC} \) và \(\overrightarrow {OM} \) bằng 

Xem lời giải » 2 năm trước 38
Câu 15: Trắc nghiệm

Hàm số \(y =  - {x^4} - {x^2} + 1\) có mấy điểm cực trị ? 

Xem lời giải » 2 năm trước 37

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »