Câu hỏi Đáp án 2 năm trước 39

Cho số phức z thỏa mãn \(\left| {\left( {1 + i} \right)z + 1 - 3i} \right| = 3\sqrt 2 \). Giá trị lớn nhất của biểu thức \(P = \left| {z + 2 + i} \right| + \sqrt 6 \left| {z - 2 - 3i} \right|\) bằng

A. \(5\sqrt 6 \)

B. \(\sqrt {15} \left( {1 + \sqrt[{}]{6}} \right)\)

C. \(6\sqrt 6 \)

Đáp án chính xác ✅

D. \(\sqrt {10}  + 3\sqrt {15} \)

Lời giải của giáo viên

verified HocOn247.com

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Trong không gian với hệ tọa độ Oxyz, phương trình đường thẳng d đi qua điểm A(1;2;1) và vuông góc với mặt phẳng \(\left( P \right):\,x - 2y + z - 1 = 0\) có dạng

Xem lời giải » 2 năm trước 53
Câu 2: Trắc nghiệm

Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(A\left( {1;\,2;\,1} \right),B\left( {3;\,4;\,0} \right)\), mặt phẳng \(\left( P \right):ax + by + cz + 46 = 0\). Biết rằng khoảng cách từ A, B đến mặt phẳng (P) lần lượt bằng 6 và 3. Giá trị của biểu thức \(T=a+b+c\) bằng

Xem lời giải » 2 năm trước 46
Câu 3: Trắc nghiệm

Tập xác định của hàm số \(y = {\left( {{x^2} - 3x + 2} \right)^{\frac{3}{5}}} + {\left( {x - 3} \right)^{ - 2}}\) là

Xem lời giải » 2 năm trước 45
Câu 4: Trắc nghiệm

Cho hàm số \(y=a^x\) với \(0 < a \ne 1\). Mệnh đề nào sau đây SAI?

Xem lời giải » 2 năm trước 45
Câu 5: Trắc nghiệm

Cho hai số thực x, y thỏa mãn \({\log _{\sqrt 3 }}\left( {{y^2} + 8y + 16} \right) + {\log _2}\left[ {\left( {5 - x} \right)\left( {1 + x} \right)} \right] = 2{\log _3}\frac{{5 + 4x - {x^2}}}{3} + {\log _2}{\left( {2y + 8} \right)^2}.\) Gọi S là tập các giá trị nguyên của tham số m để giá trị lớn nhất của biểu thức \(P = \left| {\sqrt {{x^2} + {y^2}}  - m} \right|\) không vượt quá 10. Hỏi S có bao nhiêu tập con không phải là tập rỗng?

Xem lời giải » 2 năm trước 44
Câu 6: Trắc nghiệm

Gọi \(z_1, z_2\) là hai nghiệm phức của phương trình \(2{z^2} + \sqrt 3 z + 3 = 0\). Giá trị của biểu thức \({z_1}^2 + {z_2}^2\) bằng

Xem lời giải » 2 năm trước 43
Câu 7: Trắc nghiệm

Trong không gian với hệ tọa độ Oxyz, mặt cầu (S) có tâm I(3;- 3;1) và đi qua điểm A(5;- 2;1) có phương trình là

Xem lời giải » 2 năm trước 43
Câu 8: Trắc nghiệm

Cho hàm \(y=f(x)\) có \(f(2)=2, f(3)=5\); hàm số \(y=f'(x)\) liên tục trên [2;3]. Khi đó \(\int\limits_2^3 {f'\left( x \right){\rm{d}}x} \) bằng

Xem lời giải » 2 năm trước 42
Câu 9: Trắc nghiệm

Họ nguyên hàm của hàm số \(f\left( x \right) = \cos 2x\) là

Xem lời giải » 2 năm trước 42
Câu 10: Trắc nghiệm

Tập hợp điểm biểu diễn số phức z thỏa mãn điều kiện \(\left| {\overline z  + 1 + 2i} \right| = 1\) là

Xem lời giải » 2 năm trước 42
Câu 11: Trắc nghiệm

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \(\left( P \right):mx + \left( {m + 1} \right)y - z - 2m - 1 = 0\), với m là tham số. Gọi (T) là tập hợp các điểm \(H_m\) là hình chiếu vuông góc của điểm H(3;3;0) trên (P). Gọi \(a, b\) lần lượt là khoảng cách lớn nhất, khoảng cách nhỏ nhất từ O đến một điểm thuộc (T). Khi đó, \(a+b\) bằng

Xem lời giải » 2 năm trước 41
Câu 12: Trắc nghiệm

Cho hình chóp S.ABC có SA vuông góc với (ABC), \(AB = a,AC = a\sqrt 2 ,\,\widehat {BAC} = {45^0}\). Gọi \(B_1, C_1\) lần lượt là hình chiếu vuông góc của A lên SB, SC. Thể tích khối cầu ngoại tiếp hình chóp \(ABCC_1B_1\) bằng

Xem lời giải » 2 năm trước 41
Câu 13: Trắc nghiệm

Cho hàm số \(y = {x^3}--8{x^2} + 8x\) có đồ thị (C) và hàm số \(y = {x^2} + \left( {8 - a} \right)x - b\) (với \(a,b \in R\)) có đồ thị (P). Biết đồ thị hàm số (C) cắt (P) tại 3 điểm có hoành độ nằm trong đoạn [- 1;5]. Khi \(a\) đạt giá trị nhỏ nhất thì tích \(ab\) bằng

Xem lời giải » 2 năm trước 41
Câu 14: Trắc nghiệm

Cho hàm số bậc ba \(y=f(x)\) có đồ thị như hình vẽ. Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [0;9] sao cho bất phương trình \({2^{{f^2}\left( x \right) + f\left( x \right) - m}} - {16.2^{{f^2}\left( x \right) - f\left( x \right) - m}} - {4^{f\left( x \right)}} + 16 < 0\) có nghiệm \(x \in \left( { - 1;\,1} \right)\)?

Xem lời giải » 2 năm trước 41
Câu 15: Trắc nghiệm

Số đường tiệm cận của đồ thị hàm số \(y = \frac{x}{{{x^2} + 9}}\) là

Xem lời giải » 2 năm trước 41

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »