Lời giải của giáo viên
\(z + 2w = 2 - 3i + 2\left( {1 + i} \right) = 4 - i\)
CÂU HỎI CÙNG CHỦ ĐỀ
Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(f\left( x \right)=\frac{x+3}{x-1}\) trên đoạn \(\left[ 2;3 \right]\) lần lượt là M và m. Tổng M+m bằng
Nghiệm của phương trình \({{\log }_{3}}\left( 1-3x \right)=2\) là
Tiệm cận đứng của đồ thị hàm số \(y=\frac{-2x+4}{-x+1}\) là đường thẳng:
Cho khối chóp S.ABCD có đáy là hình vuông cạnh đáy bằng a và SA vuông góc với đáy với \(SA=a\sqrt{3}.\) Thể tích của khối chóp S.ABCD bằng
Cho số phức z=2+3i. Tìm môđun của số phức \(w=\left( 1+i \right)z-\bar{z}\)
Cho hàm số \(y={{x}^{4}}-3{{x}^{2}}+m\) có đồ thị \(\left( {{C}_{m}} \right)\),với m là tham số thực.Giả sử \(\left( {{C}_{m}} \right)\) cắt trục Ox tại bốn điểm phân biệt như hình vẽ
Gọi \({{S}_{1}},{{S}_{2}},{{S}_{3}}\) là diện tích các miền gạch chéo được cho trên hình vẽ. Giá trị của m để \({{S}_{1}}+{{S}_{3}}={{S}_{2}}\) là
Trong không gian Oxyz, một véctơ chỉ phương của đường thẳng \(d:\frac{x-2}{-1}=\frac{y-1}{2}=\frac{z}{1}\) là
Trong không gian Oxyz, cho mặt cầu \(\left( S \right):{{\left( x+1 \right)}^{2}}+{{\left( y-2 \right)}^{2}}+{{\left( z-1 \right)}^{2}}=9\). Tìm tọa độ tâm I của mặt cầu \(\left( S \right)\).
Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và \(\int\limits_{0}^{1}{\left[ f\left( x \right)+3{{x}^{2}} \right]\text{d}x}=6\). Khi đó \(\int\limits_{0}^{1}{f\left( x \right)\text{d}x}\) bằng
Cho hàm số \(f\left( x \right)=-3{{x}^{2}}+1.\) Trong các khẳng định sau, khẳng định nào đúng?
Với a là số thực dương tùy ý, \(a\sqrt[3]{a}\) bằng
Trong không gian Oxyz, cho tam giác ABC với \(A\left( 3;1;2 \right), B\left( -3;2;5 \right), C\left( 1;6;-3 \right)\). Khi đó phương trình trung tuyến AM của tam giác ABC là
Hàm số nào sau đây đồng biến trên tập xác định của nó?
Giả sử hàm số f liên tục trên đoạn [0;2] thỏa mãn \(\int\limits_{0}^{1}{f(x)\text{dx}}=6, \int\limits_{1}^{2}{f(x)\text{dx}}=-2\). Giá trị của tích phân \(\int\limits_{0}^{{\pi }/{2}\;}{f(2\sin x)\cos x\text{dx}}\) là
Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B với AB=BC=a, AD=2a. Biết \(SA\bot \left( ABCD \right)\) và SA=a. Tính khoảng cách giữa AD và SB.