Lời giải của giáo viên
CÂU HỎI CÙNG CHỦ ĐỀ
Với giá trị nào của tham số m để phương trình \({4^x} - m{.2^{x + 1}} + 2m + 3 = 0\) có hai nghiệm \({x_1},{x_2}\) thỏa mãn \({x_1} + {x_2} = 4\)
Cho khối tứ diện ABCD có AB, AC', AD đôi một vuông góc với nhau và \(AB = a,AC = 2a,AD = 3a.\) Các điểm M, N, P thứ tự thuộc các cạnh AB, AC, AD sao cho \(2AM = MB,AN = 2NC,AP = PD.\) Tính thể tích khối tứ diện AMNP ?
Cho hàm số \(y = {x^3} - 3x + 1.\) Khẳng định nào sau đây là sai?
Cho khối tứ diện ABCD có BC = 3, CD = 4 và \(\widehat {ABC} = \widehat {BCD} = \widehat {ADC} = {90^0}.\) Góc giữa hai đường thẳng AD và BC bằng \(60^0\). Côsin góc giữa hai mặt phẳng (ABC) và (ACD) bằng:
Có bao nhiêu giá trị nguyên của tham số m trên \(\left[ { - 1;5} \right]\) để hàm số \(y = \frac{1}{3}{x^3} - {x^2} + mx + 1\) đồng biến trên khoảng \(\left( { - \infty ; + \infty } \right)?\)
Cho tích phân \(I = \int\limits_0^{\frac{\pi }{4}} {\left( {x - 1} \right)\sin 2xdx.} \) Tìm đẳng thức đúng?
Cho \(\int\limits_0^1 {\frac{{d{\rm{x}}}}{{\sqrt {x + 2} + \sqrt {x + 1} }}} = a\sqrt b - \frac{8}{3}\sqrt a + \frac{2}{3}\left( {a,b \in {R^*}} \right).\) Tính \(a + 2b\)?
Cho tứ diện ABCD. Gọi M là trung điểm của cạnh AB sao cho 3MB=2MA và N là trung điểm của cạnh CD. Lấy G là trọng tâm của tam giác ACD. Đường thẳng MG cắt mặt phẳng (BCD) tại điểm P. Khi đó tỷ số \(\frac{{PB}}{{PN}}\) bằng:
Tìm tập xác định của hàm số \(y = \sqrt {2{x^2} - 5x + 2} .\)
Cho hình phẳng (S) giới hạn bởi đường cong có phương trình \(y = \sqrt {2 - {x^2}} \) và trục Ox, quay (S) xung quanh Ox. Thể tích của khối tròn xoay được tạo thành bằng:
Biết \({\log _7}2 = m,\) khi đó giá trị của \({\log _{49}}28\) được tính theo m là:
Tìm tập xác định D của hàm số \({\rm{y}} = {\log _3}({{\rm{x}}^2} - 6{\rm{x}} + 8)\).
Tính đạo hàm của hàm số \(y = \left( {{x^2} - 2x + 2} \right){e^x}.\)
Cho hàm số \(y=f(x)\) liên tục và có đạo hàm trên [0;6]. Đồ thị của hàm số \(y=f'(x)\) trên đoạn [0;6] được cho bởi hình bên dưới. Hỏi hàm số \(y = {\left[ {f\left( x \right)} \right]^2}\) có tối đa bao nhiêu cực trị?
Tính tích phân \(I = \int\limits_1^5 {\frac{{dx}}{{x\sqrt {3x + 1} }}} \) ta được kết quả \(I = a\ln 3 + b\ln 5.\) Giá trị \(S = {a^2} + ab + 3{b^2}\) là: