Cho tập hợp \(S=\left\{ 1;2;3;...;17 \right\}\) gồm 17 số nguyên dương đầu tiên. Chọn ngẫu nhiên một tập con có 3 phần tử của tập hợp S. Tính xác suất để tập hợp được chọn có tổng các phần tử chia hết cho 3.
A. \(\frac{{27}}{{34}}\)
B. \(\frac{{23}}{{68}}\)
C. \(\frac{9}{{34}}\)
D. \(\frac{9}{{17}}\)
Lời giải của giáo viên
Chọn ngẫu nhiên 3 phần tử trong 17 phần tử của tập S có \({{n}_{\Omega }}=C_{17}^{3}=680\) cách chọn.
Gọi A là biến cố: “Chọn ngẫu nhiên 3 phần tử của tập S sao cho tổng của 3 phần tử chia hết cho 3”.
Trong tập hợp S có 5 số chia hết cho 3 là \(\left\{ 3;6;9;12;15 \right\}\), có 6 số chia 3 dư 1 là \(\left\{ 1;4;7;10;13;16 \right\}\) và có 6 số chia 3 dư 2 là \(\left\{ 2;5;8;11;14;17 \right\}\).
Giả sử số được chọn là \(a,b,c\Rightarrow \left( a+b+c \right)\) chia hết cho 3.
TH1: Cả 3 số a,b,c đều chia hết cho 3 \(\Rightarrow \) Có \(C_{5}^{3}=10\) cách chọn.
TH2: Cả 3 số a,b,c chia 3 dư 1 \(\Rightarrow \) Có \(C_{6}^{3}=20\) cách chọn.
TH3: Cả 3 số a,b,c chia 3 dư 2 \(\Rightarrow \) Có \(C_{6}^{3}=20\) cách chọn.
TH4: Trong 3 số a,b,c có 1 số chia hết cho 3, 1 số chia 3 dư 1, 1 số chia 3 dư 2 \(\Rightarrow \) Có 5.6.6 = 180 cách chọn.
\(\Rightarrow n\left( A \right)=10+20+20+180=230\Rightarrow P\left( A \right)=\frac{230}{680}=\frac{23}{68}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(f\left( x \right)\) có bảng biến thiên:
Hàm số đã cho đồng biến trên khoảng:
Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\), bảng xét dấu của \({f}'\left( x \right)\) như sau:
Hàm số có bao nhiêu điểm cực tiểu
Trong không gian với hệ tọa độ Oxyz, cho ba điểm \(A\left( 1;3;5 \right),\text{ }B\left( 2;0;1 \right),\text{ }C\left( 0;9;0 \right).\) Tìm trọng tâm G của tam giác ABC.
Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(A\left( 1;2;2 \right), B\left( 3;-2;0 \right)\). Một vectơ chỉ phương của đường thẳng AB là:
Tập nghiệm S của bất phương trình \({5^{1 - 2{\rm{x}}}} > \frac{1}{{125}}\) là:
Với a và b là hai số thực dương tùy ý và \(a\ne 1,\text{ }{{\log }_{\sqrt{a}}}({{a}^{2}}b)\) bằng
Đồ thị hàm số \(y=-\frac{{{x}^{4}}}{2}+{{x}^{2}}+\frac{3}{2}\) cắt trục hoành tại mấy điểm?
Cho hàm số \(y = f\left( x \right) = \left\{ {\begin{array}{*{20}{l}} {3{x^2}\,\,\,\,\,khi\,\,0 \le x \le 1}\\ {4 - x\,\,khi\,\,1 \le x \le 2\,\,} \end{array}} \right.\). Tính \(\int\limits_0^{{e^2} - 1} {\frac{{\ln \left( {x + 1} \right)}}{{x + 1}}dx} \)
Cho hình nón tròn xoay đỉnh \(S,\)đáy là đường tròn tâm \(O,\) bán kính đáy \(r = 5\). Một thiết diện qua đỉnh là tam giác \(SAB\) đều có cạnh bằng 8. Khoảng cách từ \(O\) đến mặt phẳng \(\left( {SAB} \right)\) bằng
Trong không gian Oxyz, đường thẳng \(d:\frac{{x - 1}}{2} = \frac{y}{1} = \frac{z}{3}\) đi qua điểm nào dưới đây
Trong không gian \(Oxyz\), phương trình đường thẳng đi qua điểm \(A\left( 1;2;0 \right)\) và vuông góc với mặt phẳng \(\left( P \right):2x+y-3z-5=0\) là
Cho hàm số \(y=f\left( x \right)\) có đạo hàm \({f}'\left( x \right)\). Đồ thị của hàm số \(y={f}'\left( x \right)\) như hình vẽ.
Giá trị lớn nhất của hàm số \(g\left( x \right)=f\left( 3x \right)+9x\) trên đoạn \(\left[ -\frac{1}{3};\frac{1}{3} \right]\) là
Tính thể tích của khối nón có chiều cao bằng 4 và độ dài đường sinh bằng 5.
Có bao nhiêu cặp số nguyên \(\left( x,y \right)\) với \(1\le x\le 2020\) thỏa mãn \(x\left( {{2}^{y}}+y-1 \right)=2-{{\log }_{2}}{{x}^{x}}\)