Lời giải của giáo viên
Mỗi cách xếp 3 bạn vào 5 chiếc ghế là một chỉnh hợp chập 3 của 5 phần tử nên số cách xếp có được là \(A_5^3\) (cách).
CÂU HỎI CÙNG CHỦ ĐỀ
Hàm số nào dưới đây đồng biến trên tập xác định của nó?
Khi quay một tam giác vuông (kể cả các điểm trong của tam giác vuông đó) quanh đường thẳng chứa một cạnh góc vuông ta được
Họ nguyên hàm của hàm số \(f\left( x \right) = {2^{2x}}\) là
Gọi \(x_1, x_2\) là hai nghiệm của phương trình \({2^x}{.5^{{x^2} - 2x}} = 1\). Khi đó tổng \(x_1+x_2\) bằng
Trong không gian Oxyz, xét mặt cầu (S) có phương trình dạng \({x^2} + {y^2} + {z^2} - 4x + y - 2az + 10a = 0\). Tập hợp các giá trị thực của a để (S) có chu vi đường tròn lớn bằng \(8\pi\) là
Cho \(x,y > 0\) và thỏa mãn \(\left\{ \begin{array}{l}
{x^2} - xy + 3 = 0\\
2x + 3y - 14 \le 0
\end{array} \right.\). Tính tổng giá trị lớn nhất và nhỏ nhất của biểu thức \(P = 3{x^2}y - x{y^2} - 2{x^3} + 2x\)?
Tính tổng các giá trị nguyên của tham số \(m \in \left[ { - 50;50} \right]\) sao cho bất phương trình \(m{x^4} - 4x + m \ge 0\) nghiệm đúng với mọi \(x \in R\) .
Trong không gian Oxyz, mặt cầu (S) đi qua điểm A(2;- 2;5) và tiếp xúc với ba mặt phẳng \(\left( P \right):x = 1,\left( Q \right):y = - 1\) và \(\left( R \right):z = 1\) có bán kính bằng
Khi cắt hình nón có chiều cao 16 cm và đường kính đáy 24 cm bởi một mặt phẳng song song với đường sinh của hình nón ta thu được thiết diện có diện tích lớn nhất gần với giá trị nào sau đây?
Cho hàm số \(y=f(x)\) có đạo hàm \(f'(x)\) trên tập số thực R và đồ thị của hàm số \(y=f(x)\) như hình vẽ. Khi đó, đồ thị của hàm số \(y = {\left( {f\left( x \right)} \right)^2}\) có
Tìm tất cả các giá trị thực của tham số m để phương trình \({\log ^2}\left| {{\mathop{\rm cosx}\nolimits} } \right| - m\log {\cos ^2}x - {m^2} + 4 = 0\) vô nghiệm.
Cho hàm số \(y=f(x)\) có đạo hàm liên tục trên đoạn [- 2;1] thỏa mãn \(f(0=1\) và \({\left( {f\left( x \right)} \right)^2}.f'\left( x \right) = 3{x^2} + 4x + 2.\) Giá trị lớn nhất của hàm số \(y=f(x)\) trên đoạn [- 2;1] là:
Cho hàm số \(f(x)\) thỏa mãn \({\left( {f'\left( x \right)} \right)^2} + f\left( x \right).f'\left( x \right) = 15{x^4} + 12x,\forall x \in R\) và \(f\left( 0 \right) = f'\left( 0 \right) = 1\). Giá trị của \({\left( {f\left( 1 \right)} \right)^2}\) là
Tập nghiệm của bất phương trình \(\log _2^2x - 5{\log _2}x - 6 \le 0\) là
Có 2 học sinh lớp A, 3 học sinh lớp B và 4 học sinh lớp C xếp thành một hàng ngang sao cho giữa hai học sinh lớp A không có học sinh lớp B. Hỏi có bao nhiêu cách xếp hàng như vậy?