Cho tứ diện \(ABCD\). Gọi M, N lần lượt là trung điểm của AC và BC Trên đoạn BD lấy P sao cho \(BP{\rm{ }} = {\rm{ }}2{\rm{ }}PD\). Khi đó giao điểm của đường thẳng CD với mp (MNP) là:
A. Giao điểm của MP và CD
B. Giao điểm của NP và CD
C. Giao điểm của MN và CD
D. Trung điểm của CD
Lời giải của giáo viên
CÂU HỎI CÙNG CHỦ ĐỀ
Cho phương trình \({(4 + \sqrt {15} )^x} + (2m + 1){(4 - \sqrt {15} )^x} - 6 = 0.\) Để phương trình có hai nghiệm phân biệt \(x_1, x_2\) thỏa mãn \({x_1} - 2{\rm{ }}{x_2} = 0.\) Ta có m thuộc khoảng nào?
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) có phương trình 2x + 3y – 4z +7 = 0. Tìm tọa độ véc tơ pháp tuyến của (P).
Hình vẽ bên thể hiện đồ thị của ba trong bốn hàm số \(y = {6^x},y = {8^x},y = \frac{1}{{{5^x}}}\) và \(y = \frac{1}{{{{\sqrt 7 }^x}}}.\)
Hỏi (C2) là đồ thị hàm số nào?
Gọi A là tập các số tự nhiên gồm 5 chữ số mà các chữ số đều khác 0. Lấy ngẫu nhiên từ tập A một số. Tính xác suất để lấy được số mà chỉ có đúng 3 chữ số khác nhau.
Cho hàm số \(y = f\left( x \right)\) liên tục trên R. Hàm số \(y = f'\left( x \right)\) có đồ thị như hình vẽ. Hàm số \(g\left( x \right) = f\left( {x - 1} \right) + \frac{{2019 - 2018x}}{{2018}}\) đồng biến trên khoảng nào dưới đây?
Tập nghiệm của phương trình \({5^{{x^2} - 4x + 3}} + {5^{{x^2} + 7x + 6}} = {5^{2{x^2} + 3x + 9}} + 1\) là
Cho hình chóp \(S.ABCD\) có \(AB = 5\sqrt 3 \) , \(BC =3\sqrt 3 \), góc \(\widehat {BAD} = \widehat {BCD} = {90^0}\), SA = 9 và SA vuông góc với đáy. Biết thể tích khối chóp S.ABCD bằng \(66\sqrt 3 \), tính cotang của góc giữa mặt phẳng (SBD) và mặt đáy.
Cho \(a, b, c\) là các số thực dương và thỏa mãn \(a.b.c = 1\). Biết rằng biểu thức \(P = \frac{{2b + 3a}}{{\sqrt {{b^2} - ab + 5{a^2}} }} + \frac{{2c + 3b}}{{\sqrt {{c^2} - bc + 5{b^2}} }}\) đạt giá trị lớn nhất tại \({a_0},\,{b_0},\,{c_0}\). Tính \({a_0} + {b_0} + {c_0}.\)
Phương trình tiếp tuyến của đồ thị hàm số \(y = \frac{{ - x + 3}}{{x - 1}}\) tại điểm có hoành độ \(x= 0\) là
Thể tích vật tròn xoay khi quay hình phẳng (H) xác định bởi các đường \(y = \frac{1}{3}{x^3} - {x^2},y = 0,x = 0\), \(x = 3\) quanh trục Ox là
Nếu \(F'\,(x) = \frac{1}{{2x - 1}}\) và \(F(1) = 1\) thì giá trị của \(F(4)\) bằng
Cho hình chóp S,ABC có đáy ABC là tam giác đều cạnh \(2a\sqrt 3 \), mặt bên SAB là tam giác cân với \(\widehat {ASB} = {120^o}\) và nằm trong mặt phẳng vuông góc với đáy. Gọi M là trung điểm của SC và N là trung điểm của MC Tính khoảng cách giữa hai đường thẳng AM, BN
Cho tam giác ABC có \(A\left( {1;{\rm{ }} - 1} \right),{\rm{ }}B\left( {2;{\rm{ }}5} \right),{\rm{ }}C\left( {4;{\rm{ }} - 3} \right)\). Lập phương trình đường thẳng chứa đường trung tuyến đỉnh A của tam giác ABC.
Hình lập phương có đường chéo bằng a thì có thể tích bằng