Lời giải của giáo viên
Đặt \({\log _2}\left( {4x + 4} \right) = t \Leftrightarrow 4x + 4 = {2^t} \Leftrightarrow x = {2^{t - 2}} - 1\).
Từ điều kiện \(0 \le x \le 2020 \Rightarrow 0 \le {2^{t - 2}} - 1 \le 2020 \Leftrightarrow 1 \le t - 1 \le 1 + {\log _2}2021\).
Theo giả thiết ta có: \(t - 1 + {2^{t - 2}} = y + 1 + {2^y}\left( * \right)\).
Xét hàm số \(f\left( u \right) = u + {2^{u - 1}}\) với \(1 \le u \le 1 + {\log _2}2021\).
Có \(f'\left( u \right) = 1 + {2^{u - 1}}.\ln 2 > 0,\forall u \in \left[ {1;1 + {{\log }_2}2021} \right]\) nên hàm f(u) đồng biến trên đoạn \(\left[ {1;1 + {{\log }_2}2021} \right]\).
Dựa vào \(\left( * \right) \Rightarrow f\left( {t - 1} \right) = f\left( {y + 1} \right) \Leftrightarrow t - 1 = y + 1\).
Mặt khác \(1 \le t - 1 \le 1 + {\log _2}2021 \Rightarrow 1 \le y + 1 \le 1 + {\log _2}2021 \Rightarrow 0 \le y \le {\log _2}2021 \approx 10,98\).
Vì \(y \in Z \Rightarrow y \in \left\{ {0;1;2;3;4;5;6;7;8;9;10} \right\}\).
Vậy có 11 cặp số nguyên thỏa mãn ycbt .
CÂU HỎI CÙNG CHỦ ĐỀ
Số lượng một loại vi rút cúm mùa chủng A (vi rút A) trong phòng thí nghiệm được tính theo công thức \(s\left( t \right) = s\left( 0 \right){.2^t},\) trong đó s(0) là số lượng vi rút A lúc ban đầu, s(t) là số lượng vi rút A sau t giờ. Biết sau 3 giờ thì số lượng vi rút A là 625 nghìn con và nếu số lượng vi rút lớn hơn \(2,{1.10^{19}}\) thì người nhiễm vi rút A sẽ có biểu hiện sốt và đau họng. Hỏi sau ít nhất bao nhiêu ngày kể từ khi bắt đầu nhiễm thì bệnh nhân sẽ có biểu hiện sốt và đau họng?
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x - 2y + z - 5 = 0. Điểm nào dưới đây thuộc (P)?
Cho hình hộp chữ nhật ABCD.A'B'C'D' có M, N, P lần lượt là trung điểm các cạnh BC, C'D', DD' (tham khảo hình vẽ). Biết thể tích khối hộp bằng 144, thể tích khối tứ diện AMNP bằng
Xét các số thực dương a,b,c,x,y,z thỏa mãn a > 1,b > 1,c > 1 và \({a^x} = {b^y} = {c^z} = \sqrt[3]{{abc}}\). Giá trị nhỏ nhất của biểu thức P = x + y + z thuộc tập hợp nào dưới đây ?
Số giao điểm của đường cong \(y = {x^3} - 2{x^2} + x - 1\) và đường thẳng y = 1 - 2x là
Kí hiệu z0 là nghiệm phức có phần ảo dương của phương trình \({z^2} + 2z + 10 = 0\). Trên mặt phẳng tọa độ, điểm nào dưới đây là điểm biểu diễn số phức \(w = {i^{2019}}{z_0}\)?
Trong không gian Oxyz, phương trình nào dưới đây là phương trình đường thẳng đi qua điểm A(1;2;0) và vuông góc với mặt phẳng \(\left( P \right):2x + 2y - 4z - 5 = 0?\)
Cho khối cầu có thể tích \(V = 288\pi \). Bán kính của khối cầu bằng
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
Tìm tập nghiệm S của bất phương trình \(\log _2^2x - 5{\log _2}x + 4 \ge 0\)
Cho hai số phức \({z_1} = 2 + 2i\) và \({z_2} = - 3 - i\). Phần ảo của số phức \({z_1} - \overline {{z_2}} \) là
Tập nghiệm của bất phương trình \({3^{x + 2}} \ge \frac{1}{9}\)
Cho cấp số nhân (un) với u1 = 2 và u4 = 16. Công bội của cấp số nhân đã cho bằng
Có bao nhiêu giá trị nguyên của tham số m để hàm số \(y = \frac{m}{3}{x^3} - 2m{x^2} + \left( {3m + 6} \right)x + 2020\) đồng biến trên R?