Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn \(\left[ { - 2018;2018} \right]\) để phương trình \({\left( {x + 2 - \sqrt {{x^2} + 1} } \right)^2} + \frac{{18\left( {{x^2} + 1} \right)\sqrt {{x^2} + 1} }}{{x + 2 + \sqrt {{x^2} + 1} }} = m\left( {{x^2} + 1} \right)\) có nghiệm thực?
A. 25
B. 2019
C. 2018
D. 2012
Lời giải của giáo viên
\(\begin{array}{l}
{\left( {x + 2 - \sqrt {{x^2} + 1} } \right)^2} + \frac{{18({x^2} + 1)\sqrt {{x^2} + 1} }}{{x + 2 + \sqrt {{x^2} + 1} }} = m({x^2} + 1)\\
\Leftrightarrow \frac{{{{\left( {x + 2 - \sqrt {{x^2} + 1} } \right)}^2}}}{{{x^2} + 1}} + \frac{{18\sqrt {{x^2} + 1} }}{{x + 2 + \sqrt {{x^2} + 1} }} = m
\end{array}\)
Đặt \(f(x) = \frac{{{{\left( {x + 2 - \sqrt {{x^2} + 1} } \right)}^2}}}{{{x^2} + 1}} + \frac{{18\sqrt {{x^2} + 1} }}{{x + 2 + \sqrt {{x^2} + 1} }}\). Sử dụng chức năng MODE 7, ta tìm \(\min f(x) = 7 \Leftrightarrow x = 0\)
Để phương trình \(f(x)=m\) có nghiệm \( \Rightarrow m \ge 7\). Kết hợp điều kiện ta có \(m \in \left[ {7;2018} \right],m \in Z\). Vậy có \((2018 - 7) + 1 = 2012\) giá trị nguyên của m thỏa mãn yêu cầu bài toán.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho một tập hợp A gồm 9 phân tử. Có bao nhiêu cặp tập con khác rỗng không giao nhau của tập A?
Trong không gian với hệ trục tọa độ Oxyz cho \(\overrightarrow a = (1; - 2;3)\) và \(\overrightarrow b = (2; - 1; - 1)\). Khẳng định nào sau đây đúng?
Cho x là số thực dương, khai triển nhị thức \({\left( {{x^2} + \frac{1}{x}} \right)^{12}}\) ta có hệ số của số hạng chứa bằng 792. Giá trị của m là:
Cho tứ diện ABCD có \((ACD) \bot (BCD),AC = AD = BC = BD = a,CD = 2x\). Giá trị của x để hai mặt phẳng (ABC) và (ABD) vuông góc với nhau là:
Cho hàm số \(y=f(x)\) có \(f'(x) > 0,\forall x \in R\). Tìm tập hợp tất cả các giá trị thực của x để \(f\left( {\frac{1}{x}} \right) < f\left( 1 \right)\)
Cho hàm số \(y=f(x)\) có đạo hàm \(y' = {x^2}(x - 2)\). Mệnh đề nào sau đây đúng?
Tìm tập nghiệm S của phương trình \({2^{x + 1}} = 4\)
Xác định các hệ số a, b, c để đồ thị hàm số có đồ thị hàm số như hình vẽ bên:
Cho hai góc nhọn a và b thỏa mãn \(\tan a = \frac{1}{7}\) và \(\tan b = \frac{3}{4}\). Tính a + b.
Cho hình chóp S.ABCD có \(SC = x(0 < x < a\sqrt 3 )\), các cạnh còn lại đều bằng a. Biết rằng thể tích khối chóp S.ABCD lớn nhất khi và chỉ khi \(x = \frac{{a\sqrt m }}{n}(m,n \in N*)\). Mệnh đề nào sau đây đúng?
Trong mặt phẳng với hệ tọa độ Oxy cho hai điểm A(-2;4) và B(8;4). Tìm tọa độ điểm C trên trục Ox, có hoành độ dương sao cho tam giác ABC vuông tại C.
Tìm tất cả các giá trị của tham số m để phương trình \({\left( {7 - 3\sqrt 5 } \right)^{{x^2}}} + m{\left( {7 + 3\sqrt 5 } \right)^{{x^2}}} = {2^{{x^2} - 1}}\) có đúng bốn nghiệm phân biệt.
Trong không gian với hệ tọa độ Oxyz, cho \(A\left( { - 3;0;0} \right);B\left( {0;0;3} \right);C\left( {0; - 3;0} \right)\) và mặt phẳng (P): \(x + y + z - 3 = 0\). Tìm trên (P) điểm M sao cho \(\left| {\overrightarrow {MA} + \overrightarrow {MB} - \overrightarrow {MC} } \right|\) nhỏ nhất.
Cho hình chóp SABCD, có đáy ABCD là hình vuông tâm O, cạnh bên vuông góc với mặt đáy. Gọi M là trung điểm của SA, N là hình chiếu vuông góc của A lên SO. Mệnh đề nào sau đây đúng?
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A, D, cạnh bên SA vuông góc với mặt đáy. Biết \(AB = 2AD = 2DC = 2a\), góc giữa hai mặt phẳng (SAB) và (SBC) là \(60^0\). Độ dài cạnh SA là: