Lời giải của giáo viên
\({{\log }_{9}}a={{\log }_{12}}b={{\log }_{16}}\frac{5b-a}{c}=t>0\)
Khi đó \(\left\{ \begin{align} & a={{9}^{t}} \\ & b={{12}^{t}} \\ & \frac{5b-a}{c}={{16}^{t}} \\ \end{align} \right.(*)\Rightarrow \frac{a}{b}={{\left( \frac{3}{4} \right)}^{t}}=u\in \left( 0;1 \right)\)
Từ (*) suy ra \({{5.12}^{t}}-{{9}^{t}}=c{{.16}^{t}}\Leftrightarrow 5{{\left( \frac{3}{4} \right)}^{t}}-{{\left( \frac{3}{4} \right)}^{2t}}=c\)
Suy ra \(c=-{{u}^{2}}+5u=f\left( u \right)\)
Ta có \({f}'\left( u \right)=-2u+5>0\,\,\forall u\in \left( 0;1 \right)\)
Bảng biến thiên của \(f\left( u \right)\) trên \(\left( 0;1 \right)\) là
Để tồn tại \(a,\,\,b\) thỏa mãn yêu cầu bài toán thì phương trình (*) phải có nghiệm
\(\Leftrightarrow c=f\left( u \right)\) có nghiệm \(u\in \left( 0;1 \right)\)
\(\Leftrightarrow 0<c<4\)
Do \(c\in \mathbb{N}*\) nên \(c\in \left\{ 1;2;3 \right\}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Phương trình tham số của đường thẳng đi qua điểm \(M\left( 3;-1;2 \right)\) và có vectơ chỉ phương \(\overrightarrow{u}=\left( 4;5;-7 \right)\) là:
Cho hàm số bậc bốn \(y=f\left( x \right)\). Đồ thị hình bên dưới là đồ thị của đạo hàm \(f'\left( x \right)\). Hàm số \(g\left( x \right)=f\left( \sqrt{{{x}^{2}}+2x+2} \right)\) có bao nhiêu điểm cực trị ?
Cho hàm số \(y=\frac{2x-1}{x+5}\) Khi đó tiệm cận ngang của đồ thị hàm số là đường thẳng nào trong các đường thẳng sau đây?
Có bao nhiêu giao điểm của đồ thị hàm số \(y={{x}^{3}}+3x-3\) với trục Ox?
Trong không gian với hệ tọa độ \(Oxyz\), cho đường thẳng \(\left( d \right):\left\{ \begin{align} & x=3+t \\ & y=1-2t \\ & z=2 \\ \end{align} \right.\) Một vectơ chỉ phương của d là
Tập nghiệm của bất phương trình \({{\log }_{\frac{1}{2}}}\left( x-2 \right)\ge -1\)
Cho tập hợp M có 30 phần tử. Số tập con gồm 5 phần tử của M là
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
Trong không gian\(Oxyz\), cho hai điểm \(A\left( 2;3;-1 \right)\) và \(B\left( 0;-1;1 \right)\). Trung điểm của đoạn thẳng \(AB\) có tọa độ là
Điểm M trong hình vẽ bên là điểm biểu diễn số phức?
Cho mặt cầu \(\left( S \right):\,{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2x+4y+2z-3=0\) Tính bán kính R của mặt cầu \(\left( S \right)\)
Gieo hai con súc sắc. Xác suất để tổng số chấm trên hai mặt bằng \(11\) là:
Cho hàm số \(f\left( x \right)\) có đạo hàm liên tục trên đoạn \(\left[ 1;3 \right]\) thỏa mãn \(f\left( 1 \right)=2\) và \(f\left( 3 \right)=9\). Tính \(I=\int\limits_{1}^{3}{{f}'\left( x \right)\text{d}x}\).
Cho số phức z thỏa \(\left| z \right|=1\). Gọi m, M lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của biểu thức \(P=\left| {{z}^{5}}+{{{\bar{z}}}^{3}}+6z \right|-2\left| {{z}^{4}}+1 \right|\). Tính M-m.
Cho \(\int\limits_{0}^{1}{f\left( x \right)\text{d}x}=2\) và \(\int\limits_{0}^{1}{g\left( x \right)\text{d}x}=5\), khi đó \(\int\limits_{0}^{1}{\left[ f\left( x \right)+2g\left( x \right) \right]\text{d}x}\) bằng