Lời giải của giáo viên
Phương trình \({{6}^{x}}-2m={{\log }_{\sqrt[3]{6}}}\left( 18\left( x+1 \right)+12m \right)\Leftrightarrow {{6}^{x}}=2m+3{{\log }_{6}}\left[ 6\left( 3x+2m+3 \right) \right]\)
\(\begin{align} & \Leftrightarrow {{6}^{x}}=2m+3\left[ 1+{{\log }_{6}}\left( 3x+2m+3 \right) \right] \\ & \Leftrightarrow {{6}^{x}}=3{{\log }_{6}}\left( 3x+2m+3 \right)+2m+3,\,\,\left( * \right) \\ \end{align}\)
Đặt \(y={{\log }_{6}}\left( 3x+2m+3 \right)\Leftrightarrow {{6}^{y}}=3x+2m+3,\,\left( 1 \right)\)
Mặt khác, PT(*) trở thành: \({{6}^{x}}=3y+2m+3,\,\left( 2 \right)\)
Lấy (1) trừ vế với vế cho (2), ta được
\({{6}^{y}}-{{6}^{x}}=3x-3y\Leftrightarrow {{6}^{x}}+3x={{6}^{y}}+3y\,\,\,\,\left( 3 \right)\)
Xét hàm số \(f\left( t \right)={{6}^{t}}+3t,\,\,t\in \mathbb{R}.\)
Ta có \(f'\left( t \right)={{6}^{t}}\ln 6+3>0,\,\forall t\in \mathbb{R}.\) Suy ra hàm số \(f\left( t \right)\) đồng biến trên \(\mathbb{R}\)
Mà PT (3) \(f\left( x \right)=f\left( y \right)\Leftrightarrow x=y.\)
Thay \(y=x\) vào PT (1), ta được \({{6}^{x}}=3x+2m+3\Leftrightarrow {{6}^{x}}-3x=2m+3\).
Xét hàm số \(g\left( x \right)={{6}^{x}}-3x\), với \(x\in \mathbb{R}\). Ta có \(g'\left( x \right)={{6}^{x}}\ln 6-3\Rightarrow g'\left( x \right)=0\Leftrightarrow x={{\log }_{6}}\left( \frac{3}{\ln 6} \right)\)
BBT:
Từ đó suy ra PT đã cho có nghiệm \(\Leftrightarrow 2m+3\ge g\left( {{\log }_{6}}\frac{3}{\ln 6} \right)\approx 0,81\Rightarrow m\ge -1,095\)
Vậy có 2023 số nguyên m thỏa mãn yêu cầu.
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian \(Oxyz\) Cho \(d\,:\,\,\frac{x-4}{2}=\frac{y-5}{-1}=\frac{z-3}{2}\) và hai điểm \(A\left( \,3;\,1;\,2 \right);\,\,B\left( \,-1;\,3;-2 \right)\) Mặt cầu tâm \(I\) bán kính \(R\) đi qua hai điểm hai điểm \(A,\,B\) và tiếp xúc với đường thẳng \(d.\) Khi \(R\) đạt giá trị nhỏ nhất thì mặt phẳng đi qua ba điểm \(A,\,B,\,I\) là \(\left( P \right):\,\,2x+by+c\text{z}+d=0.\) Tính \(d+b-c.\)
Có bao nhiêu số nguyên dương \(y\) sao cho ứng với mỗi \(y \) có không quá 10 số nguyên \(x\) thỏa mãn \(\left( {{3}^{x+1}}-\sqrt{3} \right)\left( {{3}^{x}}-y \right)<0\)?
Trong không gian Oxyz, cho hình bình hành ABCD có \(A\left( 0;1;-2 \right),B\left( 3;-2;1 \right)\) và \(C\left( 1;5;-1 \right)\). Phương trình tham số của đường thẳng CD là:
Trong không gian \(Oxyz\), mặt cầu \(\left( S \right):{{x}^{2}}+{{\left( y-1 \right)}^{2}}+{{\left( z+3 \right)}^{2}}=25\) có tâm là
Cho hình lăng trụ đứng \(ABC.{A}'{B}'{C}'\) có đáy ABC là tam giác vuông cân tại có \(AB=a,A{A}'=a\sqrt{2}\). Góc giữa đường thẳng \({A}'C\) với mặt phẳng \(\left( A{A}'{B}'B \right)\) bằng:
Trong không gian Oxyz, mặt cầu có tâm \(I\left( 3;-1;2 \right)\) và tiếp xúc với trục \(Ox\) có phương trình là:
Công thức thể tích của khối nón có bán kính đáy là \(\frac{r}{2}\) và chiều cao h là
Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng xét dấu đạo hàm dưới đây
Số điểm cực trị của hàm số là
Tìm đường tiệm cận đứng và đường tiệm cận ngang của đồ thị hàm số \(y=\frac{2x-1}{x+1}\).
Trong không gian \(Oxyz\), vectơ nào dưới đây là một vectơ pháp tuyến của mặt phẳng vuông góc với trục \(Oy\)?
Cho hai số phức z và \(\text{w}\) thỏa mãn z=-i+2 và \(\overline{\text{w}}=-3-2i\). Số phức \(\overline{z}.\text{w}\) bằng:
Cho \(\int\limits_{2}^{3}{f(x)\text{d}x}=-2\) . Tính \(I=\int\limits_{-\frac{3}{2}}^{-1}{f(-2x)\text{d}x}\) ?
Tập nghiệm của bất phương trình \({{\log }_{3}}\left( 25-{{x}^{2}} \right)\le 2\) là
Tích các nghiệm của phương trình \({{2}^{{{x}^{2}}-2x}}=8\) là