Lời giải của giáo viên
Điều kiện: \(\left\{ \begin{array}{l}
{x^2} + y > 0\\
x + y > 0\\
x,y \in
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x + y \ge 1\\
x,y \in
\end{array} \right..\)
Đặt \(t = x + y{\rm{ }}(t \in ,{\rm{ }}t \ge 1)\), ta có:
\({\log _3}\left( {{x^2} + y} \right) \ge {\log _2}(x + y) \Leftrightarrow {\log _3}\left( {{x^2} - x + t} \right) - {\log _2}t \ge 0{\rm{ }}(1).\)
Do mỗi y tương ứng với một và chỉ một t nên ứng với mỗi x có không quá 127 số nguyên y thỏa mãn \({\log _3}\left( {{x^2} + y} \right) \ge {\log _2}(x + y)\) khi và chỉ khi ứng với mỗi x có không quá 127 số nguyên t > = 1 thỏa mãn (1).
Hàm số \(f(t) = {\log _3}\left( {{x^2} - x + t} \right) - {\log _2}t\) có:
\(f'(t) = \frac{1}{{\left( {{x^2} - x + t} \right)\ln 3}} - \frac{1}{{t\ln 2}} < 0,\forall x,t \in \)
\( \Rightarrow f(1) > f(2) > ... > f(127) > f(128) > ...\) (f nghịch biến trên \({\rm{[}}1; + \infty )\))
Xét (1) với ẩn t. Ta thấy (1) luôn nhận t = 1 làm nghiệm với bất kỳ x nguyên nào vì
\({x^2} - x + 1 \ge 1 \Rightarrow {\log _3}({x^2} - x + 1) - {\log _2}1 \ge {\log _3}1 - {\log _2}1 = 0.\)
Khi đó các nghiệm tiếp theo của (1), nếu có, sẽ phải được lấy lần lượt là 2, 3, 4, … bởi vì nếu t > =2 không là nghiệm của (1) thì \(f({t_0}) < 0\) và với mọi \(t > {t_0}\), ta có \(f(t) < f({t_0}) < 0\) nên t cũng không là nghiệm của (1).
Do đó ứng với mỗi x có không quá 127 số nguyên t thỏa mãn (1) khi và chỉ khi ứng với mỗi x , (1) có không quá 127 nghiệm t khi và chỉ khi:
\(\begin{array}{l}
f(128) < 0 \Leftrightarrow {\log _3}({x^2} - x + 128) - {\log _2}128 < 0 \Leftrightarrow {x^2} - x + 128 < {3^7}\\
\Leftrightarrow {x^2} - x - 2059 < 0 \Rightarrow - 44,9 < x < 45,9 \Rightarrow - 44 \le x \le 45.
\end{array}\)
Vậy có tất cả 45 – (- 44) +1 = 90 số nguyên x.
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian Oxyz, cho đường thẳng \(d:\frac{{x - 3}}{4} = \frac{{y + 1}}{{ - 2}} = \frac{{z + 2}}{3}.\) Vectơ nào dưới đây là một vectơ chỉ phương của d?
Cho khối chóp có diện tích đáy B = 2 và chiều cao h = 3 Thể tích của khối chóp bằng
Cho hình chóp S.ABC có đáy là tam giác đều cạnh 2a, SA vuông góc với mặt phẳng đáy, góc giữa mặt phẳng (SBC) và mặt phẳng đáy bằng 60o. Diện tích của mặt cầu ngoại tiếp hình chóp S.ABC bằng
Trong không gian Oxyz, cho mặt cầu \((S):{x^2} + {y^2} + {(z - 1)^2} = 16.\) Bán kính của (S) bằng
Cho hàm số bậc ba y = f(x) có đồ thị là đường cong trong hình bên
Số nghiệm thực của phương trình f(x) = 1 là
Trong không gian Oxyz, hình chiếu vuông góc của điểm A(3;5;1) trên trục Ox có tọa độ là
Cho khối cầu có bán kính r = 2 Thể tích của khối cầu đã cho bằng
Cho khối hộp chữ nhật có ba kích thước 2; 6; 7. Thể tích của khối hộp đã cho bằng
Gọi S là tập hợp tất cả các số tự nhiên có 4 chữ số đôi một khác nhau và các chữ số thuộc tập hợp \(\{ 1,2,3,4,5,6,7\} .\) Chọn ngẫu nhiên một số thuộc S, xác suất để số đó không có hai chữ số liên tiếp nào cùng chẵn bằng
Cho hàm số bậc bốn f(x) có bảng biến thiên như sau:
Số điểm cực trị của hàm số \(g(x) = {x^4}{[f(x - 1)]^2}\) là
Biết \(\int_1^2 f (x)dx = 2.\) Giá trị của \(int_1^2 3 f(x)dx\) bằng
Xét các số thực không âm x và y thỏa mãn \(2x + y{.4^{x + y - 1}} \ge 3\). Giá trị nhỏ nhất của biểu thức \(P = {x^2} + {y^2} + 2x + 4y\) bằng
Cho hàm số f(x) liên tục trên R và có bảng xét dấu của f(x) như sau:
Số điểm cực trị của hàm số đã cho là
Trong không gian Oxyz, cho điểm \(M(2; - 1;2)\) và đường thẳng \(d:\frac{{x - 1}}{2} = \frac{{y + 2}}{3} = \frac{{z - 3}}{1}.\) Mặt phẳng đi qua điểm M và vuông góc với d có phương trình là
Trong không gian Oxyz, cho ba điểm \(A(1;2;0),B(1;1;2)\) và \(C(2;3;1)\) . Đường thẳng đi qua A và song song với BC có phương trình là