Câu hỏi Đáp án 2 năm trước 18

Có một khối gỗ là khối lăng trụ đứng \(ABC.{A}'{B}'{C}'\) có \(AB=30\text{ cm}, BC=40\text{ cm}, CA=50\text{ cm}\) và chiều cao \(A{A}'=100\text{ cm}\). Từ khối gỗ này người ta tiện để thu được một khối trụ có cùng chiều cao với khối gỗ ban đầu. Thể tích lớn nhất của khối trụ gần nhất với giá trị nào dưới đây?

A. \(62500{\rm{ c}}{{\rm{m}}^3}\)

B. \(60000{\rm{ c}}{{\rm{m}}^3}\)

C. \(31416{\rm{ c}}{{\rm{m}}^3}\)

Đáp án chính xác ✅

D. \(6702{\rm{ c}}{{\rm{m}}^3}\)

Lời giải của giáo viên

verified HocOn247.com

Khi ta tiện khối lăng trụ đứng tam giác \(ABC.{A}'{B}'{C}'\) để được một khối trụ có cùng chiều cao với khối lăng trụ thì khối trụ đó có hai đáy là đường tròn nội tiếp hai tam giác ABC và \({A}'{B}'{C}'\).

Gọi \(p,\text{ }r\) lần lượt là nửa chu vi và bán kính đường tròn nội tiếp tam giác ABC.

Ta có \(p=\frac{AB+BC+CA}{2}=60\text{ cm}, {{S}_{\Delta ABC}}=\sqrt{p\left( p-AB \right)\left( p-BC \right)\left( p-AC \right)}=\sqrt{60.30.20.10}=600\text{ c}{{\text{m}}^{2}}\)

Mà \({{S}_{\Delta ABC}}=pr\Rightarrow r=\frac{{{S}_{\Delta ABC}}}{p}=\frac{600\sqrt{2}}{60}=10\text{ cm}\).

Thể tích khối trụ là \(V=\pi {{r}^{2}}h=\pi {{.10}^{2}}.100=10000\pi \approx 31416\text{ c}{{\text{m}}^{3}}\).

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Một vật chuyển động với vận tốc \(v\left( t \right)\left( m/s \right)\) có gia tốc \(a\left( t \right)=3{{t}^{2}}+t\left( m/{{s}^{2}} \right)\). Vận tốc ban đầu của vật là \(2\left( m/s \right)\). Hỏi vận tốc của vật sau 2s

Xem lời giải » 2 năm trước 47
Câu 2: Trắc nghiệm

Có bao nhiêu số nguyên dương y để tập nghiệm của bất phương trình \(\left( {{\log }_{2}}x-\sqrt{2} \right)\left( {{\log }_{2}}x-y \right)<0\) chứa tối đa 1000 số nguyên.

Xem lời giải » 2 năm trước 47
Câu 3: Trắc nghiệm

Tìm số phức z thỏa mãn \(z+2-3i=2\overline{z}.\)

Xem lời giải » 2 năm trước 45
Câu 4: Trắc nghiệm

Rút gọn biểu thức \(P={{x}^{\frac{1}{5}}}.\sqrt[3]{x}\) với x>0.

Xem lời giải » 2 năm trước 44
Câu 5: Trắc nghiệm

Nghiệm của phương trình \({{2}^{2x+1}}=32\) bằng

Xem lời giải » 2 năm trước 43
Câu 6: Trắc nghiệm

Họ nguyên hàm của hàm số \(f\left( x \right) = x + \sin 2x\) là.

Xem lời giải » 2 năm trước 43
Câu 7: Trắc nghiệm

Cho hàm số \(y=h\left( x \right)\) có bảng biến thiên như sau:

Hàm số đạt cực đại tại điểm

Xem lời giải » 2 năm trước 43
Câu 8: Trắc nghiệm

Một khối trụ có thể tích bằng \(6\pi \). Nếu giữ nguyên chiều cao và tăng bán kính đáy của khối trụ đó gấp 3 lần thì thể tích của khối trụ mới bằng bao nhiêu?

Xem lời giải » 2 năm trước 41
Câu 9: Trắc nghiệm

Tính tích phân \(\int\limits_2^6 {\frac{1}{x}dx} \) bằng.

Xem lời giải » 2 năm trước 41
Câu 10: Trắc nghiệm

Diện tích mặt cầu (S) tâm I đường kính bằng a là

Xem lời giải » 2 năm trước 39
Câu 11: Trắc nghiệm

Đồ thị \(\left( C \right)\) của hàm số \(y=\frac{\left( a+1 \right)x+2}{x-b+1}\) nhận gốc tọa độ O làm tâm đối xứng thì tổng a+b là

Xem lời giải » 2 năm trước 39
Câu 12: Trắc nghiệm

Cho hàm số \(y=f\left( x \right)\) nhận giá trị dương và có đạo hàm \({f}'\left( x \right)\) liên tục trên \(\mathbb{R}\) thỏa mãn \(\int\limits_{0}^{x}{\left[ {{f}^{2}}\left( t \right)+{{\left( {f}'\left( t \right) \right)}^{2}} \right]}dt={{\left( f\left( x \right) \right)}^{2}}-2018\). Tính \(f\left( 1 \right)\)

Xem lời giải » 2 năm trước 39
Câu 13: Trắc nghiệm

Cho \(I=\int\limits_{0}^{2}{f(x)d}x=3.\) Khi đó \(J=\int\limits_{0}^{2}{\left[ 4f\left( x \right)-3 \right]dx}\) bằng:

Xem lời giải » 2 năm trước 39
Câu 14: Trắc nghiệm

Phần ảo của số phức z=2-3i là

Xem lời giải » 2 năm trước 38
Câu 15: Trắc nghiệm

Cho hàm số y=f(x) có bảng biến thiên như hình sau

Hàm số y=f(x) đồng biến trên khoảng nào dưới đây?

Xem lời giải » 2 năm trước 38

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »